B3D Handout 23: More Linear ODEs

Systems with insufficient eigenvectors

Beware: sometimes, if there is a repeated eigenvalue, there may not be N eigenvectors to the N-equation system.

For example, consider a two-by-two system with one repeated root, eigenvalue λ , and only one eigenvector, \underline{v} . This gives us one solution:

$$\underline{x} = \underline{v}e^{\lambda t}.$$

To find another solution, we try the form

$$\underline{x} = (t\underline{v} + \underline{w})e^{\lambda t}
\underline{\dot{x}} = \underline{v}e^{\lambda t} + \lambda(t\underline{v} + \underline{w})e^{\lambda t} = (t\lambda\underline{v} + \underline{v} + \lambda\underline{w})e^{\lambda t}
\underline{\underline{A}}\underline{x} = \underline{\underline{A}}(t\underline{v} + \underline{w})e^{\lambda t} = (t\underline{\underline{A}}\underline{v} + \underline{\underline{A}}\underline{w})e^{\lambda t} = (t\lambda\underline{v} + \underline{\underline{A}}\underline{w})e^{\lambda t}$$

so this form satisfies $\underline{\dot{x}} = \underline{A} \underline{x}$ if

$$\underline{\underline{A}}\,\underline{w} = \underline{v} + \lambda \underline{w} \implies (\underline{\underline{A}} - \lambda \underline{\underline{I}})\underline{w} = \underline{v}$$

so \underline{w} is the **generalised eigenvector** associated with λ .

Now we have two independent solutions:

$$\underline{x}_1 = \underline{v}e^{\lambda t} \qquad \underline{x}_2 = [t\underline{v} + \underline{w}]e^{\lambda t}$$

giving a general solution

$$\underline{x} = \alpha \underline{v} e^{\lambda t} + \beta \left[t \underline{v} + \underline{w} \right] e^{\lambda t},$$

where α and β are scalar constants that can be found from the initial conditions.

Determining constants from initial conditions

Suppose we were also told that $\underline{x} = \underline{x}_0$ when t = 0.

To find the constant vector \underline{c} , we must sort out the particular solution \underline{p} first, and then apply the initial conditions.

Given the initial condition \underline{x}_0 at t_0 ,

$$c_1 \underline{x}_1(t_0) + c_2 \underline{x}_2(t_0) + p = \underline{x}_0$$

which is yet another linear equation (or set of equations) to solve for the constants c_1 and c_2 . Usually we will solve this using row-echelon form.