B3D Handout 24: Matrix Diagonalisation

If an N x N matrix A has N linearly independent eigenvectors v,,, put
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[Note that V. A # AV the order of multiplication of matrices is important.]

As the vectors v,, are linearly independent, V| # 0 and we can invert V. to form g_l. Then

VAV =VTVA=A

Expression for A
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Since AV =V A, we can multiply on the right by g_l to have A

Summary of the method

e Find eigenvectors and eigenvalues: this only works if we have N eigenvectors
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Common special case: A symmetric
If A is symmetric, that is, é—r = A, then

e its eigenvalues are real.
e the eigenvectors v; and v; are orthogonal if \; # A;.

e the eigenvectors for A\; = A; can be made orthogonal if necessary.

We can always choose eigenvectors of length 1, or normalise, so we get an orthonormal set:

Ei'yj:{(l) z;j and  v'v; = ;- ;.
Then
vl viv, oo vluy 1 0 0
T . . . . .
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vy UNUp ctr UNUN 0 0 1

which is the identity matrix, so




