B3D

Example Sheet 3.

Handed out Monday 23 January 2006. Due in before the lecture on Monday 30 January 2006.

- 1. Consider the function $f(x, y) = 2x^2 + 3xy + xy^2 y^3$.
 - (a) Find $\underline{\nabla} f$.
 - (b) At the point P where x = 0 and y = 1, find the rate of increase of f in the direction of the vector $\underline{v} = 3\underline{i} + 4\underline{j}$.
 - (c) If f represents the height of a landscape and you are standing on the ground above P and wish to walk uphill as steeply as possible, which way should you walk? Give your answer as a unit vector.
- 2. Find ∇f for the following functions:
 - (a) $f(x,y) = 3x^2 + 4y^2$
 - (b) $f(x, y, z) = xyz + e^y + \sin xy$
 - (c) $f(x, y, z) = x^2 + y^2 + z^2$.
- 3. For this question, you may like to use the fact that in three dimensions, the vector ∇f is perpendicular to any surface f = constant.
 - (a) Find a vector field which is perpendicular to the surface

$$x^3 + y^2 + z = 4.$$

(b) Find a vector field which is perpendicular to the surface

$$z = x^2 - y^2.$$

4. For the vector function

$$\underline{v}(x,y,z) = (x^2 + y^2, 2xy, xyz)$$

- (a) Calculate the divergence of \underline{v} : that is, find $\underline{\nabla} \cdot \underline{v}$.
- (b) Calculate the curl of \underline{v} : i.e. find $\underline{\nabla} \times \underline{v}$.
- 5. Calculate the Laplacian of the following functions, using the formulae given below if the function is expressed in polar coordinates:
 - (a) $f_1(x, y, z) = 3x^2 + y^2 + \sin z$
 - (b) $f_2(r,\theta) = r\cos\theta$
 - (c) $f_3(r, \theta, z) = z^2 r^2$
 - (d) $f_4(\rho, \theta, \phi) = \rho^2 \sin^2 \theta \sin^2 \phi$.

The formulae for the Laplacian in polar coordinates are:

In plane polars:
$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

In cylindrical polars: $\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$
In spherical polars: $\nabla^2 f = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{\rho^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$