B3D

Example Sheet 4.

Handed out Monday 30 January 2006. Due in before the lecture on Monday 6 February 2006.

- 1. Are the following operators linear or nonlinear?

2. Find expressions for the following commutator operators:

- Operating on f(x):
 - (a) $[d^2/dx^2, x]$
 - (b) $[d^3/dx^3, x^2]$
- Operating on f(x, y):
 - (c) $\left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y}, xy\right]$
 - (d) $[x\partial/\partial y y\partial/\partial x, xy]$
- 3. If the matrices $\underline{\underline{A}}$, $\underline{\underline{B}}$, $\underline{\underline{C}}$ and $\underline{\underline{D}}$ are defined as:

$$\underline{\underline{A}} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \qquad \underline{\underline{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \qquad \underline{\underline{C}} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \qquad \underline{\underline{D}} = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$

and the operators O_A , O_B , O_C and O_D are defined as

$$\begin{array}{cccc} O_A & : & \underline{v} \to \underline{A}\,\underline{v} & & O_C & : & \underline{v} \to \underline{C}\,\underline{v} \\ O_B & : & \underline{v} \to \underline{B}\,\underline{v} & & O_D & : & \underline{v} \to \underline{D}\,\underline{v} \end{array}$$

calculate the commutators

- (a) $[O_A, O_B]$, (d) $[O_B, O_C]$, (b) $[O_A, O_C]$, (e) $[O_B, O_D]$, (c) $[O_A, O_D]$, (f) $[O_C, O_D]$.
- 4. [Exam question, 1999] In this question you need to know about the **identity function**, which leaves unchanged the object on which it operates:

Id :
$$f(x) \to f(x)$$

You also need the notation $x_1 = x$, $x_2 = y$, $x_3 = z$ for part (c).

- (a) Explain what is meant by the commutator $[L_1, L_2]$ of two linear operators L_1, L_2 .
- (b) Show that, for functions of a single variable x,

$$\left[\frac{\mathrm{d}}{\mathrm{d}x}, x\right] = Id$$

and find an expression for $\left[\frac{\mathrm{d}^3}{\mathrm{d}x^3}, x^3\right]$ in terms of $Id, \frac{\mathrm{d}}{\mathrm{d}x}, \frac{\mathrm{d}^2}{\mathrm{d}x^2}$.

(c) Let $\{e_1, e_2, e_3\}$ denote the standard basis of \mathbb{R}^3 . The angular momentum operator in the e_i , e_j plane is

$$L_{ij} = x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i}$$

Calculate $[L_{12}, L_{13}]$.