B3D

Example Sheet 9.

Handed out Tuesday 14 March 2006. Due in before the lecture on Monday 20 March 2006.

1.

$$\underline{a} = \begin{pmatrix} 1\\4\\2 \end{pmatrix} \quad \underline{b} = \begin{pmatrix} -1\\0\\5 \end{pmatrix} \quad \underline{c} = \begin{pmatrix} 3\\5\\-1 \end{pmatrix} \quad \underline{d} = \begin{pmatrix} 6\\14\\5 \end{pmatrix}$$

Show that the vectors $\underline{a}, \underline{b}, \underline{c}$ are linearly independent.

Write \underline{d} as a linear combination of \underline{a} , \underline{b} , \underline{c} .

2. You are given four vectors

$$\underline{x}_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \qquad \underline{x}_2 = \begin{pmatrix} 2\\0\\-1\\1 \end{pmatrix}, \qquad \underline{x}_3 = \begin{pmatrix} 0\\1\\1\\3 \end{pmatrix} \qquad \text{and} \qquad \underline{w} = \begin{pmatrix} 4\\1\\0\\0 \end{pmatrix}$$

Verify that the vectors \underline{x}_1 , \underline{x}_2 and \underline{x}_3 are linearly independent. Express the vector \underline{w} as a linear combination of \underline{x}_1 , \underline{x}_2 and \underline{x}_3 .

Use the Gram-Schmidt process to create a set of three mutually orthogonal vectors $\underline{g}_1, \underline{g}_2, \underline{g}_3$ each of which is a linear combination of $\underline{x}_1, \underline{x}_2$ and \underline{x}_3 . Use dot products to calculate the coefficients α_i such that

$$\underline{w} = \alpha_1 \underline{g}_1 + \alpha_2 \underline{g}_2 + \alpha_3 \underline{g}_3$$

3. Find the eigenvalues and eigenvectors of the matrix

$$\underline{\underline{B}} = \left(\begin{array}{cc} 2 & 6\\ 6 & -7 \end{array}\right).$$

Give a matrix $\underline{\underline{V}}$ for which $\underline{\underline{B}} = \underline{\underline{V}} \underline{\underline{\Lambda}} \underline{\underline{V}}^{-1}$ for $\underline{\underline{\Lambda}}$ a diagonal matrix. Find the inverse matrix $\underline{\underline{V}}^{-1}$ and calculate directly the two products

- $\underline{\underline{V}}^{-1}\underline{\underline{B}}\,\underline{\underline{V}}$, which should be the diagonal matrix $\underline{\underline{\Lambda}}$, and
- $\underline{\underline{V}}\underline{\underline{\Lambda}}\underline{\underline{V}}^{-1}$, verifying that you regain the original matrix $\underline{\underline{B}}$.

4. Consider the coupled ordinary differential equations

$$\dot{x} = 2x + 6y + 2 \dot{y} = 6x - 7y - 4$$

Write these two equations in the form $\underline{\dot{x}} = \underline{A} \underline{x} + \underline{b}$, explaining what \underline{x} , \underline{A} and \underline{b} are.

Find the general solution to this matrix differential equation (using results from question 3 where possible).