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1 Introduction

1.1 What are perturbation methods?

Many physical processes are described by equations which cannot be solved analytically.
Working in mathematical modelling, you would have to be exceptionally lucky never to
have this happen to you!

There are two main approaches to dealing with these equations:

• numerical methods and

• analytic approximations.

Numerical methods will be taught in GM04; here we focus on analytical approximations.
This series of lectures is a very brief introduction to how to systematically construct an
approximation of the solution to a problem that is otherwise untractable.

The methods all rely on there being a parameter in the problem that is relatively small:
ε ≪ 1. The most common example you may have seen before1 is that of high-Reynolds
number fluid mechanics, in which a viscous boundary layer is found close to a solid
surface. Note that in this case the standard physical parameter Re is large: our small
parameter is ε = Re−1.

1.2 Why use perturbation methods?

There are two major types of use for these methods. The first is in modelling physical
applications which, like high-Reynolds number flow, naturally supply such a small pa-
rameter. This kind of application is fairly common, and this is one of the reasons that
perturbation methods are a cornerstone of applied mathematics.

The second use of perturbation methods is coupled with numerical methods. Although
computed solutions to a problem can be very accurate, and available for very complex
systems, there are two major drawbacks to numerical computation: and perturbation
methods can help with both of these.

There is always a concern with numerical calculations about whether the code is correct.
A helpful check can be to push one or more of the physical parameters of the problem to
extreme values and compare the numerical results with a perturbation solution worked
out when that parameter is small (or large).

There are other ways of checking code, however; more importantly, a numerical calcula-
tion does not often provide insight into the underlying physics. Sometimes (surprisingly
often in practice) the simplified problems presented by taking a limiting case have a sim-
plified physics which nonetheless encapsulates some of the key mechanisms from the full
problem – and these mechanisms can then be better understood through perturbation
methods.

1Don’t worry if this is new to you. It’s an application area: the theory and methods do not depend
on it.
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1.3 A real research example

This comes from my own research2. I will not present the equations or the working here:
but the problem in question is the stability of a polymer extrusion flow. The parameter
varied is wavelength: and for both very long waves (wavenumber k ≪ 1) and very short
waves (k−1 ≪ 1) the system is much simplified. The long-wave case, in particular, gives
very good insight into the physics of the problem.

If we look at the plot of growth rate of the instability against wavenumber (inverse
wavelength):

we can see good agreement between the perturbation method solutions (the dotted lines)
and the numerical calculations (solid curve): this kind of agreement gives confidence in
the numerics in the middle region where perturbation methods can’t help.

1.4 References

The principal reference for this course is the book by Hinch. In particular, many of the
examples and exercises are taken from it. The others are also very good – your choice is
really a question of style preference. Also see http://www.ucl.ac.uk/~ucahhwi/GM01/.

• Hinch, Perturbation methods

• Van Dyke, Perturbation methods in fluid mechanics

• Kevorkian & Cole, Perturbation methods in applied mathematics

• Bender & Orszag, Advanced mathematical methods for scientists and engineers

1.5 How I teach

This subject is very much about methods: as such, it is learned by doing. I will hand
out exercises at appropriate moments – it’s very much in your interest to work through
these in your own time. When time allows, I’ll also get you to try some small problems
during lectures. Please ask if anything isn’t clear or you need a bit more help. If you
haven’t understood then I probably need to go through it again for everyone else too; so
please speak out! I’m also happy for you to come to my office to ask questions. My office
hours are Wednesday 11-12 and Friday 12-1, but feel free to try at other times as well.

2H J Wilson & J M Rallison. Journal of Non-Newtonian Fluid Mechanics, 72, 237–251, (1997)
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2 Regular perturbation expansions

2.1 Example algebraic equation

Let us look first at the equation

x2 + εx − 1 = 0. (1)

This is a quadratic so of course we can solve it, regardless of ε:

x = −1

2
ε ±

√

(

1 +
1

4
ε2

)

.

If ε is small, ε ≪ 1, we can then expand for small ε (using the Taylor series for the square
root3) to have

x =











1 − 1

2
ε +

1

8
ε2 − 1

128
ε4 + · · ·

−1 − 1

2
ε − 1

8
ε2 +

1

128
ε4 + · · ·

2.2 Expanding directly from the equation

We were lucky with the equation above that we could solve the whole thing analytically.
Here we will try something which doesn’t depend quite so heavily on such luck.

The first step is to look at the problem for ε = 0. We are expecting ε to be small, so the
answer to this question should4 be close to the true answer to the problem.

Setting ε = 0 gives

x2 − 1 = 0

with roots x = 1 and x = −1. Let us look at the root near x = −1, and try the expansion

x = −1 + εx1 + ε2x2 + ε3x3 + · · ·
3Actually, in this case the expansion is valid for |ε| < 2; but we will usually require ε ≪ 1
4This is a massive assumption. If it is true, then a regular perturbation expansion will do the job: if

not, we need a singular expansion. We’ll see them soon enough.
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If we substitute this into equation (1) we get:

1 − 2εx1 − 2ε2x2 + ε2x2
1 − 2ε3x3 + 2ε3x1x2 + · · ·

− ε + ε2x1 + ε3x2 + · · ·
−1 = 0

We equate powers of ε:

ε0 : 1 − 1 = 0
ε1 : −2x1 − 1 = 0 , x1 = −1

2

ε2 : −2x2 + x2
1 + x1 = 0 , x2 = −1

8

ε3 : −2x3 + 2x1x2 + x2 = 0 , x3 = 0

Note that the equation at ε0 was automatically satisfied. This will always happen if we
have solved the ε = 0 equation correctly.

The series we have found is

x = −1 − 1

2
ε − 1

8
ε2 + O(ε4).

This matches with the exact solution. Remember the notation O(ε4): this means that
the missing terms from the equation tend to zero at least as fast as ε4, as ε → 0.

2.3 Example differential equation

Suppose we are trying to solve the following differential equation in x ≥ 0:

df(x)

dx
+ f(x) − εf 2(x) = 0, f(0) = 2. (2)

We can’t solve this directly. However, let’s look at ε = 0:

df(x)

dx
+ f(x) = 0, f(0) = 2,

which has solution

f(x) = 2e−x.

So in the same way as for the algebraic equation, let us try a regular perturbation
expansion in ε:

f = 2e−x + εf1(x) + ε2f2(x) + ε3f3(x) + · · ·
where in order to satisfy the initial condition f(0) = 2, we will have f1(0) = f2(0) =
f3(0) = · · · = 0. Substituting into (2) gives

−2e−x + εf ′

1(x) + ε2f ′

2(x) + ε3f ′

3(x) + · · ·
+2e−x + εf1(x) + ε2f2(x) + ε3f3(x) + · · ·

− 4εe−2x − 4ε2e−xf1(x) − ε3f 2
1 (x) − 4ε3e−xf2(x) + · · · = 0
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and we can collect powers of ε:

ε0 : −2e−x + 2e−x = 0
ε1 : f ′

1(x) + f1(x) − 4e−2x = 0
ε2 : f ′

2(x) + f2(x) − 4e−xf1(x) = 0
ε3 : f ′

3(x) + f3(x) − f 2
1 (x) − 4e−xf2(x) = 0

The order ε0 (or 1) equation is satisfied automatically.

Order ε terms. The equation

f ′

1(x) + f1(x) = 4e−2x

has solution
f1(x) = −4e−2x + c1e

−x

and the boundary condition f1(0) = 0 gives c1 = 4:

f1(x) = 4(e−x − e−2x).

Order ε2 terms. The equation becomes

f ′

2(x) + f2(x) = 4e−xf1(x) =⇒ f ′

2(x) + f2(x) = 16e−x(e−x − e−2x)

with solution
f2(x) = 8(−2e−2x + e−3x) + c2e

−x

and the boundary condition f2(0) = 0 gives c2 = 8:

f2(x) = 8(e−x − 2e−2x + e−3x).

Order ε3 terms. The equation is

f ′

3(x) + f3(x) − f 2
1 (x) − 4e−xf2(x) = 0

which becomes

f ′

3(x) + f3(x) = [4(e−x − e−2x)]2 + 4e−x[8(e−x − 2e−2x + e−3x)]

= 48(e−2x − 2e−3x + e−4x)

The solution to this equation is

f3(x) = 16(−3e−2x + 3e−3x − e−4x) + c3e
−x.

Applying the boundary condition f3(0) = 0 gives c3 = 16 so

f3(x) = 16(e−x − 3e−2x + 3e−3x − e−4x).

The solution we have found is:

f(x) = 2e−x + 4ε(e−x − e−2x) + 8ε2(e−x − 2e−2x + e−3x)

+ 16ε3(e−x − 3e−2x + 3e−3x − e−4x) + · · · (3)
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This is an example of a case where carrying out a perturbation expansion can give us an
insight into the full solution. Notice that, for the terms we have calculated,

fn(x) = 2n+1e−x(1 − e−x)n,

suggesting a guessed full solution

f(x) =
∞

∑

n=0

εn2n+1e−x(1 − e−x)n = 2e−x

∞
∑

n=0

[2ε(1 − e−x)]n =
2e−x

1 − 2ε(1 − e−x)
.

We can check this solution, and it is indeed the correct solution to the ODE of equa-
tion (2).

Exercise 1: Find the first three terms of an expansion for each root of the following
equation:

x3 − (2 − ε)x2 − x + 2 + ε = 0.

Exercise 2: Try a regular perturbation expansion in the following differential equation:

y′′ + 2εy′ + (1 + ε2)y = 1, y(0) = 0, y(π/2) = 0.

Calculate the first three terms, that is, up to order ε2. Apply the boundary conditions
at each order.

2.4 Warning signs

So far we have looked at expansions which work. In the sections to come we will see a
variety of ways this straightforward method can fail.

As a preview, if you start out using the näıve method, these are a few possible warning
signs that something else is going on.

One of the powers of ε produces an insoluble equation

By this I don’t mean a differential equation with no analytic solution: that is just
bad luck. Rather I mean an equation of the form x1 + 1 − x1 = 0 which cannot be
satisfied by any value of x1.

The equation at ε = 0 doesn’t give the right number of solutions

A polynomial of degree n should have n roots (not necessarily all distinct); a linear
ODE of order n should have n solutions. If the equation produced by setting ε = 0
has less solutions then this method will not give all the possible solutions to the full
equation. This happens when the coefficient of the highest power (for a polynomial)
or the highest derivative (for a differential equation) is zero when ε = 0.

The coefficients of ε can grow without bound

In the case of an expansion f(x) = f0(x) + εf1(x) + ε2f2(x) + · · · , the series may
not be valid for some values of x if some or all of the fi(x) become very large. Say,
for example, that f2(x) → ∞ while f1(x) remains finite. Then εf1(x) is no longer
strictly larger than ε2f2(x) and there is serious trouble.
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3 Rescaling

3.1 Example algebraic equation

Here our model equation is
εx2 + x − 1 = 0. (4)

We won’t solve it directly just yet; instead let’s see what happens if we try our simple
expansion method.

We set ε = 0 to have
x − 1 = 0,

with just the one solution x = 1. Since we started with a second-degree polynomial we
know there is trouble ahead: but we can find the root near x = 1 without any difficulty.

Exercise 3: Calculate the root near x = 1, up to and including terms of order ε3.

Now let us look at the true solution to see what’s gone wrong.

x =
−1 ±

√
1 + 4ε

2ε

As ε → 0, the leading-order terms of the two roots are

x = 1 + O(ε); and − 1

ε
+ O(1).

The first of these is amenable to the simplistic approach; we haven’t seen the second root
because it → ∞ as ε → 0.

For this second root, let us try a series

x = x−1ε
−1 + x0 + εx1 + · · ·

We substitute it into (4):

x2
−1ε

−1 + 2x−1x0 + ε(x2
0 + 2x−1x1) + · · ·

+ x−1ε
−1 + x0 + εx1 + · · ·

− 1 = 0
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and collecting powers of ε gives:

ε−1 : x2
−1 + x−1 = 0 ; x−1 = 0 , −1

ε0 : 2x−1x0 + x0 − 1 = 0 ; x0 = 1 , −1
ε1 : x2

0 + 2x−1x1 + x1 = 0 ; x1 = −1 , 1

Note that we can now get the expansions for both of the roots using the same method.

3.2 Finding the scaling

What do we do if we can’t use the exact solution to tell us about the first term in the
series?

We use a trial scaling δ. We put
x = δ(ε)X

with δ being an unknown function of ε, and X being strictly order 1. We call this
X = ord(1): as ε → 0, X is neither small nor large.

Let’s try it for our equation (4):

εx2 + x − 1 = 0.

We put in the new form, and then look at the different possible values of δ.

LHS = εδ2X2 + δX − 1 = 0
δ ≪ 1 LHS = small + small − 1 = 0 ℵ
δ = 1 LHS = small + X − 1 = 0 regular root

1 ≪ δ ≪ 1

ε

LHS

δ
= small + X − small = 0 ℵ

δ =
1

ε

LHS

δ
= X2 + X − small = 0 singular root

δ ≫ 1

ε

LHS

εδ2
= X2 + small − small = 0 ℵ

Note that X = 0 cannot be a solution because we require X = ord(1). The scalings that
work (in this case δ = 1 and δ = ε−1) are called distinguished scalings.

Exercise 4: Find the distinguished scalings for the following equation:

ε3x3 + x2 + 2x + ε = 0.

and find the first two nonzero terms in the expansion of each root.

Exercise 5: Find the distinguished scalings for the following equation:

εx3 + x2 + (2 − ε)x + 1 = 0.

and find the first two terms in the expansion of each root. [Hint: you may find an exact
root – then there will be no more terms in the expansion.]
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3.3 Non-integral powers

Try this algebraic equation:

(1 − ε)x2 − 2x + 1 = 0.

Setting ε = 0 gives a double root x = 1. Now we try an expansion:

x = 1 + εx1 + ε2x2 + · · ·

Substituting in gives

1 + 2εx1 + ε2(x2
1 + 2x2) + · · ·

− ε − 2ε2x1 + · · ·
− 2 − 2εx1 − 2ε2x2 + · · ·
+ 1 = 0

At ε0, as expected, the equation is automatically satisfied. However, at order ε1, the
equation is

2x1 − 1 − 2x1 = 0 1 = 0

which we can never satisfy. Something has gone wrong. . .

In fact in this case we should have expanded in powers of ε1/2. If we set

x = 1 + ε1/2x1/2 + εx1 + · · ·

then we get

1 + 2ε1/2x1/2 + ε(x2
1/2 + 2x1) + · · ·

− ε + · · ·
− 2 − 2ε1/2x1/2 − 2εx1 + · · ·
+ 1 = 0

At order ε0 we are still OK as before; at order ε1/2 we have

2x1/2 − 2x1/2 = 0

which is also automatically satisfied. We don’t get to determine anything until we go to
order ε1, where we get

x2
1/2 + 2x1 − 1 − 2x1 = 0 x2

1/2 − 1 = 0

giving two solutions x1/2 = ±1. Both of these are valid and will lead to valid expansions
if we continue.

We could have predicted that there would be trouble when we found the double root:
near a quadratic zero of a function, a change of order ε1/2 in x is needed to change the
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function value by ε:

3.4 Choosing the expansion series

In the example above, if we had begun by defining δ = ε1/2 we would have had a straight-
forward regular perturbation series in δ. But how do we go about spotting what series
to use?

In practice, it is usually worth trying an obvious series like ε, ε2, ε3 or, if there is a
distinguished scaling with fractional powers, then a power series based on that. But this
trial-and-error method, while quick, is not guaranteed to succeed.

In general, for an equation in x, we can pose a series

x ∼ x0δ0(ε) + x1δ1(ε) + x2δ2(ε) + · · ·

in which xi is strictly order 1 as ε → 0 (i.e. tends neither to zero nor infinity) and the
series of functions δi(ε) has δ0(ε) ≫ δ1(ε) ≫ δ2(ε) · · · for ε ≪ 1.

Then at each order we look for a distinguished scaling. Let us work through an example:

√
2 sin

(

x +
π

4

)

− 1 − x +
1

2
x2 = −1

6
ε.

In this case there is a solution near x = 0, which we will investigate.

First let us sort out the trigonometric term, expanding it as a Taylor series about x = 0:

√
2 sin

(

x +
π

4

)

=
√

2
[

sin x cos
(π

4

)

+ cos x sin
(π

4

)]

=

√
2

[

1√
2

sin x +
1√
2

cos x

]

= sin x + cos x = 1 + x − x2

2!
− x3

3!
+

x4

4!
+

x5

5!
+ · · ·

The governing equation becomes

−x3

6
+

x4

24
+

x5

120
+ O(x6) = −1

6
ε.

x3 − x4

4
− x5

20
+ O(x6) = ε.
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We pose a series
x = x0δ0(ε) + x1δ1(ε) + · · ·

and substitute it. The leading term on the left hand side is x3
0δ

3
0, and on the right hand

side is ε. So we set δ0 = ε1/3 and x0 = 1.

Now we have
x = ε1/3 + x1δ1(ε) + · · ·

which we substitute into the governing equation. Remembering that δ1 ≪ ε1/3 and
keeping terms up to order ε2/3δ1 and ε4/3 (neglecting only terms which are guaranteed to
be smaller than one of these), we have

3x1ε
2/3δ1 −

ε4/3

4
= 0.

To make this work, we need δ1 = ε2/3 and then x1 = 1/12.

The first two terms of the solution are:

x = ε1/3 +
1

12
ε2/3 + · · ·

Exercise 6: Find the first two terms of all four roots of

εx4 − x2 − x + 2 = 0.

3.5 Logarithms

HERE BE DRAGONS

There is a worse case than fractional power of ε: logarithms. These are beyond the scope
of this course. If you ever have a problem in which a quantity like ln (1/ε) appears to be
important, either give up or go to a textbook.
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4 Scalings with differential equations

4.1 Stretched coordinates

Consider the first-order linear differential equation

ε
df

dx
+ f = 0.

Since it is first order, we expect a single solution to the homogeneous equation. If we try
our standard method and set ε = 0 we get f = 0 which is clearly not a good first term
of an expansion!

We can solve this by standard methods to give:

f = A0 exp [−x/ε].

This gives us the clue that what we should have done was change to a stretched variable

z = x/ε.

Let us ignore the full solution and simply make that substitution in our governing equa-
tion. Note that df/dx = df/dz dz/dx = ε−1df/dz.

εε−1 df

dz
+ f = 0

df

dz
+ f = 0.

Now the two terms balance: that is, they are the same order in ε. Clearly the solution
to this equation is now A0 exp [−z] and we have found the result.

This is a general principle. For a polynomial, we look for a distinguished scaling of the
quantity we are trying to find. For a differential equation, we look for a stretched version
of the independent variable.

The process is very similar to that for a polynomial. We use a trial scaling δ and set

x = a + δ(ε)X.

Then we vary δ, looking for values at which the two largest terms in the scaled equation
balance.

Let’s work through the process for the following equation:

ε
d2f

dx2
+

df

dx
− f = 0.

Again, we note that if x = a+δX then d/dx = d/dX dX/dx = δ−1d/dX. We substitute
in these scalings, and then look at the different possible values of δ.

LHS = εδ−2d2f/dX2 + δ−1df/dX − f = 0
δ ≪ ε ε−1δ2LHS = f ′′ + small − small = 0 ℵ
δ = ε εLHS = f ′′ + f ′ − small = 0

ε ≪ δ ≪ 1 δLHS = small + f ′ − small = 0 ℵ
δ = 1 LHS = small + f ′ − f = 0
δ ≫ 1 LHS = small + small − f = 0 ℵ
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Here the two distinguished stretches are δ = ε and δ = 1.

For δ = 1 we can treat this as a regular perturbation expansion:

Exercise 7: Calculate the first two terms of the solution to

ε
d2f

dx2
+

df

dx
− f = 0

where derivatives are order 1 (i.e. δ = 1).

For δ = ε we use our new variable X = ε−1(x − a) and work with the new governing
equation:

d2f

dX2
+

df

dX
− εf = 0

Now we try a regular perturbation expansion:

f = f0 + εf1 + ε2f2 + · · ·

We substitute this in and collect powers of ε:

f0XX + εf1XX + ε2f2XX + · · ·
+ f0X + εf1X + ε2f2X + · · ·

− εf0 − ε2f1 + · · · = 0

We then solve at each order:

ε0 : f0XX + f0X = 0 f0 = A0 + B0e
−X

ε1 : f1XX + f1X − f0 = 0 f1 = A0X − B0Xe−X + A1 + B1e
−X

and so on. Of course, without boundary conditions to apply, this process spawns large
numbers of unknown constants. Rescaling to our original variable completes the process:

f(x) ∼ A0 + B0e
−(x−a)/ε + ε

[(

x − a

ε

)

(

A0 − B0e
−(x−a)/ε

)

+ A1 + B1e
−(x−a)/ε

]

+ · · ·

Note that this expansion is only valid where X = (x− a)/ε is order 1: that is, for x close
to the (unknown) value a.

Exercise 8: Find the distinguished stretches for the following differential equation:

ε3 d3f

dx3
+ ε

d2f

dx2
+

df

dx
+ f = 0

Find the leading-order term of each solution.
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4.2 Nonlinear differential equations: scaling and stretching

Recall that for a linear differential equation, if f is a solution then so is Cf for any
constant C. So if f(x; ε) is a solution as an asymptotic expansion, then Cf is a valid
asymptotic solution even if C is a function of ε.

The same is not true of nonlinear differential equations. Suppose we are looking at the
equation:

d2f

dx2
+ εf(x)

df

dx
+ f 2(x) = 0

There are two different types of scaling we can apply: we can scale f , or we can stretch
x. To get all valid scalings we need to do both of these at once.

Let us take f = εαF where F is strictly ord(1), and x = a + εβz with z also strictly
ord(1). Then a derivative scales like d/dx ∼ ε−βd/dz and we can look at the scalings of
all our terms:

d2f

dx2
+ εf(x)

df

dx
+ f 2(x) = 0

εαε−2β εε2αε−β ε2α

As always with three terms in the equation, there are three possible balances.

• For terms I and II to balance, we need α−2β = 2α+1−β. This gives α+β+1 = 0, so
that terms I and II scale as ε2+3α, and term III scales as ε2α. We need the balancing
terms to dominate, so we also need 2α > 2 + 3α which gives α < −2.

• For terms I and III to balance, we need α − 2β = 2α. This gives α = −2β, so
that terms I and III scale as ε2α and term II scales as ε1+5α/2. Again, we need the
non-balancing term to be smaller than the others, so we need 1 + 5α/2 > 2α, i.e.
α > −2.

• Finally, to balance terms II and III, we need 2α − β + 1 = 2α which gives β = 1.
Then terms II and III scale as ε2α and term I scales as εα−2, so to make term I
smaller than the others we need α − 2 > 2α, giving α < −2.

We can plot the lines in the α–β plane where these balances occur, and in the regions
between, which term (I, II or III) dominates:

We can see that there is a distinguished scaling α = −2, β = 1 where all three terms
balance. If we apply this scaling to have z = (x − a)/ε and F = ε2f then the governing
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ODE for F (z) (after multiplication of the whole equation by ε4) becomes

d2F

dz2
+ F

dF

dz
+ F 2 = 0.

This is very nice: but it may not always be appropriate: the boundary conditions may
fix the size of either f or x, in which case the best you can do may be one of the simple
balance points (i.e. a point (α, β) lying on one of the lines in the diagram).

Exercise 9: Consider the equation

ε
d2f

dx2
+ f

df

dx
− f = 0

Find the scalings f = εαF and stretches x = a + εβz at which two dominant terms
balance, and sketch these balance scalings in the α–β plane. Hence determine the critical
values of α and β for which all three terms balance. Give also the possible values of β if
we are constrained by the boundary conditions to have α = 0.
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5 Matching: Boundary Layers

Consider the following equation (rather similar to exercise 7):

ε
d2f

dx2
+

df

dx
+ f = 0

There are two solutions. One is regular:

f = f0(x) + εf1(x) + · · ·

Substituting gives, at order 1,

f ′

0 + f0 = 0 =⇒ f0 = a0e
−x.

At order ε we have

f ′

1 + f1 + f ′′

0 = 0 =⇒ f1 = [a1 − a0x]e−x.

The second solution is singular, and the distinguished scaling (to balance the first two
terms) is δ = ε. We introduce a new variable z = (x − a)/ε to have

d2f

dz2
+

df

dz
+ εf = 0

with solution
f = F0(z) + εF1(z) + · · ·

At order 1 we have
F ′′

0 + F ′

0 = 0 =⇒ F ′

0 = −B0e
−z

F0(z) = A0 + B0e
−z.

At order ε we have

F ′′

1 + F ′

1 + F0 = 0 =⇒ F ′

1 = −A0 − B0ze
−z − B1e

−z

F1 = A1 − A0z + B0[ze
−z + e−z] + B1e

−z.

We now have two possible solutions:

f(x) ∼ a0e
−x + ε[a1 − a0x]e−x + · · ·

F (z) ∼ A0 + B0e
−z + ε[A1 − A0z + B0(ze

−z + e−z) + B1e
−z] + · · ·

Question: Will we ever need to use both of these in the same problem?

Answer: The short answer is yes. This is a second-order differential equation, so we are
entitled to demand that the solution satisfies two boundary conditions.

Suppose, with the differential equation above, the boundary conditions are

f = e−1 at x = 1 and
df

dx
= 0 at x = 0.
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We will start by assuming that the unstretched form will do, and apply the boundary
condition at x = 1 to it:

f(x) ∼ a0e
−x + ε[a1 − a0x]e−x + · · ·

e−1 = a0e
−1 + ε[a1 − a0]e

−1 + · · ·
which immediately yields the conditions a0 = 1, a1 = 1. If we had continued to higher
orders we would be able to find the constants there as well.

Now what about the other boundary condition? We have no more disposable constants
so we’d be very lucky if it worked! In fact we have

f ′(x) = −a0e
−x + ε[−a1 − a0 + a0x]e−x + · · ·

so at x = 0,
f ′(0) = −1 − 2ε + · · ·

This is where we have to use the other solution. If we fix a = 0 in the scaling for z, then
the strained region is near x = 0. We can re-express the boundary condition in terms of
z:

df

dz
= 0 at z = 0.

Now applying this boundary condition to our strained expansion gives:

F (z) ∼ A0 + B0e
−z + ε[A1 − A0z + B0(ze

−z + e−z) + B1e
−z] + · · ·

F ′(z) = −B0e
−z + ε[−A0 − B0ze

−z − B1e
−z] + · · ·

and at z = 0,
F ′(0) = −B0 + ε[−A0 − B1] + · · ·

Imposing F ′(0) = 0 fixes B0 = 0, B1 = −A0 but does not determine A0, B1 or A1. The
solution which matches the x = 0 boundary condition is

F (z) ∼ A0 + ε[A1 − A0z − A0e
−z] + · · ·

We now have two perturbation expansions, one valid at x = 1 and for most of our region,
the other valid near x = 0. We have not determined all our parameters. How will we do
this? The answer is matching.

5.1 Intermediate variable

Suppose (as in the example above) we have two asymptotic solutions to a given problem.

• One scales normally and satisfies a boundary condition somewhere away from the
tricky region: we will call this the outer solution.

• The other is expressed in terms of a scaled variable, and is valid in a narrow region,
(probably) near the other boundary. We will call this the inner solution.
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In order to make sure that these two expressions both belong to the same real (physical)
solution to the problem, we need to match them.

In the case where the outer solution is

f(x) = f0(x) + εf1(x) + ε2f2(x) + · · ·

and the inner

F (z) = F0(z) + εF1(z) + ε2F2(z) + · · ·
with scalings z = x/ε, we will match the two expressions using an intermediate vari-

able. This is a new variable, ξ, intermediate in size between x and z, so that when ξ is
order 1, x is small and z is large. We can define it as

x = εαξ =⇒ z = εα−1ξ,

for α between 0 and 1. It is best to keep α symbolic5.

The procedure is to substitute ξ into both f(x) and F (z) and then collect orders of ε
and force the two expressions to be equal. This is best seen by revisiting the previous
example.

Example continued

We had

f(x) = e−x + ε(1 − x)e−x + · · ·
and

F (z) = A0 + ε[A1 − A0z − A0e
−z] + · · ·

with z = x/ε. Defining x = εαξ, we look first at f(x):

f(x) = e−εαξ + ε(1 − εαξ)e−εαξ + · · ·

Since εα ≪ 1 we can expand the exponential terms to give

f(x) = 1 − εαξ − 1

2
ε2αξ2 + ε − 2εα+1ξ + O(ε2, ε1+2α, ε3α)

Now we look at F (z). Note that z = εα−1ξ, which is large.

F (z) = A0 + ε[A1 − A0ε
α−1ξ − A0e

−εα−1ξ] + · · ·

Here the exponential terms become very small indeed so we neglect them and have

F (z) = A0 − A0ε
αξ + εA1 + · · ·

Comparing terms of the two expansions, at order 1 we have

1 = A0

5However, occasionally you may find it quicker to pick a value of α = 1/2, say. Be warned: sometimes
there is only a specific range of α which works.

21



and at order εα,
−ξ = −A0ξ

which is automatically satisfied if A0 = 1. If we fix α > 1/2 then the next term is order
ε, giving

1 = A1.

The next term in the outer expansion is order ε2α, but to match that we would have to
go to order ε2 in the inner expansion.

We have now determined all the constants to this order: so in the outer we have

f(x) = e−x + ε(1 − x)e−x + · · ·

and in the inner x = εz,

F (z) = 1 + ε[1 − z − e−z] + · · ·

Note: The beauty of the intermediate variable method for matching is that it has so
much structure. If you have made any mistakes in solving either inner or outer equation,
or if (by chance) you have put the inner region next to the wrong boundary, the structure
of the two solutions won’t match and you will know something is wrong!

Exercise 10: Look at the problem

ε
d2f

dx2
+

df

dx
= cos x

with boundary conditions f(0) = 0, f(π) = 1. Find the two distinguished stretches for
this equation. Calculate the first three terms of the regular expansion, and apply the
boundary condition at π to determine the constants.

Now apply your stretch near x = 0. Find the first three terms of the inner solution,
and apply the boundary condition at x = 0 to determine some of the constants in this
expansion.

Finally use an intermediate variable to match your two expressions and determine the
remaining constants.

5.2 Where is the boundary layer?

In the last example (and in your exercise) we assumed the boundary layer would be
next to the lower boundary.

If we didn’t know, how would we work it out?

Let’s start by trying the previous example, but attempting to put the boundary layer
near x = 1.

Recall we had an outer solution:

f(x) ∼ a0e
−x + ε[a1 − a0x]e−x + · · ·
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and an inner solution

F (z) ∼ A0 + B0e
−z + ε[A1 − A0z + B0(ze

−z + e−z) + B1e
−z] + · · ·

with z = (x − a)/ε.

This time we will try to fit the outer solution to the boundary condition at x = 0. We
have

df

dx
∼ −a0e

−x + ε[a0x − a0 − a1]e
−x + · · ·

so the condition is
df

dx
= 0 at x = 0.

0 = −a0 + ε[−a1 − a0] + · · ·
which gives a0 = 0, a1 = 0 and so on. It is clear that we’re not going to get a solution
this way!

However, there is another problem, which appears when we try to fit the inner solution
at the other boundary. We are setting a = 1 and trying to fit F (z) = e−1 at z = 0. This
gives:

e−1 = A0 + B0 + ε[A1 + B0 + B1] + · · ·
so A0 = e−1 − B0 and A1 = −B0 − B1. This seems fine, but look at the solution we get:

F (z) ∼ e−1 + B0(e
−z − 1) + ε[−e−1z + B0(z − 1 + (z + 1)e−z) + B1(e

−z − 1)] + · · ·

Remember that, now the boundary layer is at the top, the outer limit of the inner solution
will be for large negative z: in other words, all of these exponentials will be growing!
This can never match onto a well-behaved outer solution.

Key fact: The boundary layer is always positioned so that any exponentials in the inner
solution decay as you move towards the outer.
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5.3 A worse example

This example comes from Cole’s book (available in the department library). I would not
expect you to solve equations of this difficulty without hints. The governing equation is

ε
d2f

dx2
+ f

df

dx
− f = 0

with boundary conditions f(0) = −1, f(1) = 1.

Note that you have seen this equation before in exercise 9; you should have found the
distinguished scaling was f = ord(ε1/2). Here we can’t use that scaling as the boundary
conditions fix f to be ord(1).

Outer

Let us look first at the outer solution. We pose a series

f = f0(x) + εf1(x) + ε2f2(x) + · · ·

The leading-order equation is

f0
df0

dx
− f0 = 0 =⇒ f0

(

df0

dx
− 1

)

= 0

which has two solutions,

f0(x) ≡ 0 and f0(x) = x + C.

Note that for both of these, d2f0/dx2 = 0 and so f0 is an exact solution of the equation,
and f1 = f2 = · · · = 0.

Clearly the branch f0 = 0 can’t match either of the boundary conditions, so we know our
outer solution must be

f(x) = x + C.

We have not yet found where the boundary layer will be; since the outer is so simple, we
might as well work out the constant for both possibilities now.

If the outer meets x = 1 then we have C = 0:

fouter,1(x) = x.

If the outer meets x = 0 then instead we have C = −1 and

fouter,0(x) = x − 1.

Inner

What stretch do we expect for the inner? Note that the boundary conditions mean we
can’t scale f , we can only stretch x. In your solutions to exercise 9, this is equivalent
to fixing α = 0. There were two balancing scalings that crossed the axis α = 0: β = 0
(which is the outer) and β = 1, which will be our boundary layer scaling.

24



[If you didn’t do that example, simply find the scaling for x = a+ εbz which balances the
first two terms of the ODE.]

We introduce z = (x − a)/ε and rewrite our differential equation:

d2f

dz2
+ f

df

dz
− εf = 0

Now we pose an inner expansion:

f ∼ F0(z) + εF1(z) + ε2F2(z) + · · ·

and at leading order the governing equation is

d2F0

dz2
+ F0

dF0

dz
= 0.

We can integrate this directly once:

dF0

dz
+

1

2
F 2

0 = C.

Now remember that for a boundary layer solution, we are going to need solutions which
decay exponentially to some fixed value out of the layer. This means that as z → ±∞
(but not necessarily both), we need dF0/dz → 0 and so C ≥ 0. Let us set C = 2k2 for
convenience.

This ODE for F0 has three different possible forms of solution. If k = 0 the solution is

F0 =
2

z + C
,

which is no good as it only decays algebraically. For k > 0 there are three solutions, two
of which work.

First we look at the possibility that |F0| = 2k. In that case

dF0

dz
= 0 F0 = ±2k.

This doesn’t have the exponential decay we need either. So we move on to the two other
cases: |F0| < 2k and |F0| > 2k.
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In the two cases |F0| < 2k and |F0| > 2k we can solve the ODE by partial fractions.

If |F0| < 2k then we have:

2
dF0

dz
= 4k2 − F 2

0 .

∫

dz =

∫

2

4k2 − F 2
0

dF0 =
1

2k

∫
(

1

2k − F0

+
1

2k + F0

)

dF0

2kz + 2B = − ln (2k − F0) + ln (2k + F0)

exp [2(kz + B)] =
2k + F0

2k − F0

= −1 +
4k

2k − F0

4k

exp [2(kz + B)] + 1
= 2k − F0

F0 = 2k − 4k

exp [2(kz + B)] + 1
= 2k − 4k exp [−(kz + B)]

exp [kz + B] + exp [−(kz + B)]

F0 = 2k
exp [kz + B] − exp [−(kz + B)]

exp [kz + B] + exp [−(kz + B)]
= 2k

sinh [kz + B]

cosh [kz + B]
= 2k tanh [kz + B].

Exercise 11: Show that the solution of the ODE

2
dF0

dz
= 4k2 − F 2

0

with |F0| > 2k is
F0 = 2k coth [kz + B].
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Now we have two solutions which decay exponentially to some limit as z → ∞:

F0 = 2k tanh [kz + B] and F0 = 2k coth [kz + B].

Look at the forms of the tanh and coth curves:

We can see that the tanh solution moves smoothly from one value to another over the
width of the boundary layer, whereas the coth profile cannot be given a value z = 0.
This means that the coth profile can only be used if the boundary layer is at one end or
other of the region, whereas the tanh profile can be used anywhere.

Matching

Let us try first to put the boundary layer near x = 0. The outer solution must match
the boundary condition at x = 1 so

fouter = x.

Now in the inner region we can either have

F (z) = 2k tanh [kz + B] or F (z) = 2k coth [kz + B].

In either case we need F (z = 0) = −1 and F (z → ∞) = 0. The second of these gives
k = 0 in both cases, and then we cannot match the other boundary condition for any B.
FAILED.

Now we try with a boundary layer near x = 1. This time the outer solution must match
the boundary condition at x = 0 so

fouter = x − 1.

In the inner region the possibilities are

F (Z) = 2k tanh [kz + B] or F (z) = 2k coth [kz + B].

The boundary conditions are F (z = 0) = 1 and F (z → −∞) = 0. We have the same
problem again: we need both k 6= 0 and k = 0. FAILED.
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Finally, let us try having the “boundary layer” in the middle, at some general position a
between 0 and 1. This time we have two different branches of the outer solution:

fouter,1(x) = x fouter,1(a) = a.

fouter,0(x) = x − 1 fouter,0(a) = a − 1.

Our inner solution will then have boundary conditions

F (z → −∞) = a − 1 F (z → ∞) = a.

The only profile we are allowed is the tanh profile, which goes from −2k to 2k over the
width of the layer. This fixes

a − 1 = −2k a = 2k =⇒ a = 1/2, k = 1/4.

Our inner solution is

F (z) =
1

2
tanh z/4

and z = (x − 1
2
)/ε. The complete solution looks like this:
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Exercise 12: Consider the advection-diffusion equation for f (weak diffusion):

∇ · [fV ] − ε∇2f = 0.

We will impose boundary conditions

fVy − ε
∂f

∂y
= 0 at y = 1,

f = 2 at y = 2

The boundary condition at y = 1 corresponds to a condition of no flux of f through the
boundary y = 1.

Now suppose that the imposed velocity field is given by

Vx = κx/y Vy = −κ.

(a) Substitute the velocity field into the governing equation and boundary conditions.

(b) Setting ε = 0, find a solution f0 which matches the upper boundary condition at
y = 2. [Hint: try f0(x, y) = g(y).]

(c) Substitute your solution back into the full governing equation. What can you say
about the corrections to f0 for ε 6= 0?

(d) The inner boundary condition at y = 1 is not satisfied. Assume that there is a
boundary layer close to y = 1. How does the size of this layer scale with ε? Assume
that derivatives with respect to x remain order 1.

(e) Introduce a scaled variable z to replace y near y = 1. Replace y in the governing
equation and give your new PDE to two orders of magnitude. Do the same for the
inner boundary condition at y = 1.

(f) Using your new PDE and boundary condition alone, calculate the first term of a
perturbation expansion for F (x, z) = f(x, y), valid within the boundary layer near
y = 1. You will not be able to determine all the constants (or even all the functions
of x) at this stage.

[Hint: if you have a PDE in which all the derivatives are with respect to z, you can
solve it like an ODE in z but all the “constants of integration” must be functions of
x.]

(g) Can your solution be made to match onto the outer solution as z → ∞ and y → 1?

(h) Continue to the next order correction in your inner expansion. What PDE must be
satisfied by the next term? What boundary conditions will be applied to it?

(i) Solve your PDE for the second term in the expansion of the inner solution. Apply
the boundary condition to get a relation between the different unknowns.

(j) Carry out matching between your outer and inner solutions. Thus find an ODE in
x for the unknown function from the calculation of (f).

(k) Solve the ODE to complete the calculation of the leading-order term in the inner
expansion. You may assume that the function is well-behaved at x = 0.
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