Summary: What tools apply and when?

Algebraic equations

- 1. Set $\varepsilon = 0$ and solve the resulting system. Do you have enough solutions?
- 2. **[YES]**: For each root, set $\delta_0 = 1$ and go to 4.
- 3. [NO]: Seek leading-order scalings $x = \delta_0 x_0$ that work with x_0 strictly order 1.
- 4. For each root, you now know δ_0 . Try the expansion $x = \delta_0 x_0 + \varepsilon \delta_0 x_1 + \cdots$
 - Does it work?
 - [YES] Done!
 - [NO], I have an equation with no solutions.
 - Try a different scaling $x = \delta_0 x_0 + \delta_1 x_1$ and look for values of δ that make leading terms balance (after eliminating x_0 terms from the equation).

Nonlinear Differential Equations

- 1. Do you have boundary conditions that fix the scale of f?
- 2. YES: Fix the scale of f and allow stretches $x = a + \delta z$. Treat as linear differential equations (below).
- 3. NO: Allow both scale and stretch $f = \varepsilon^{\alpha} F$, $x = a + \varepsilon^{\beta} z$. Graph all possible balances and identify any distinguished scalings.

Linear Differential Equations

- 1. Identify all working stretches $x = a + \delta z$. For each stretch:
 - Write down the new equation to solve for f(z)
 - Try an expansion $f = f_0 + \varepsilon f_1 + \cdots$. Does it work?
 - **[YES]** Go on to 2.
 - **[NO]**, I have an equation with no solutions.
 - * Try a different scaling $f = f_0 + \delta f_1$ and look for values of δ that make leading terms balance (after eliminating f_0 terms from the equation).
- 2. You now have n distinct solutions (for an nth order ODE). Choose which one to use where. Helpful rules:
 - You will need the *outer* (unstretched) solution in most of the domain
 - An *inner* (boundary layer) solution must **decay exponentially** as you move into the outer region.
- 3. Apply the boundary conditions to the relevant solution at each boundary.
- 4. Use intermediate variable matching to determine the remaining unknowns.