
1

Chapter 4: Numerical Methods for Common

Mathematical Problems

Interpolation

Problem: Suppose we have data defined at a discrete set of points (xi, yi), i = 0, 1, ..., N . Often it is
useful to have a smooth function y(x) that passes through all these points so that we can calculate y at
intermediate values of x.

Lagrange Polynomial Interpolation

There is a UNIQUE polynomial of degree N passing through the N+1 points (xi, yi), i = 0, 1, ..., N .

Formula

P (x) =
(x − x1)(x − x2)....(x − xN)

(x0 − x2)(x0 − x3)....(x0 − xN)
y0 +

(x − x0)(x − x2)....(x − xN)

(x1 − x0)(x1 − x2)....(x1 − xN)
y1

+.... +
(x − x0)(x − x1)....(x − xN−1)

(xN − x0)(xN − x1)....(xN − xN−1)
yN

This is known as the LAGRANGE INTERPOLATING POLYNOMIAL. Note that the denominators are
constants and the numerators are all polynomials of degree N .
Check

P (x0) =
(x0 − x1)(x0 − x2)....(x0 − xN)

(x0 − x2)(x0 − x3)....(x0 − xN)
y0 +

(x0 − x0)(x0 − x2)....(x0 − xN)

(x1 − x0)(x1 − x2)....(x1 − xN)
y1

+.... +
(x0 − x0)(x0 − x1)....(x0 − xN−1)

(xN − x0)(xN − x1)....(xN − xN−1)
yN

= 1.y0 + 0.y1 + + 0.yN = y0 as claimed!

Similarly P (x1) = y1, P (x2) = y2, etc.

Linear and Cubic Interpolation

Sometimes N is so large that the Lagrange polynomials become impractical. In this case, alternatives
include LINEAR and CUBIC interpolation.

Linear: For linear interpolation, draw a straight line between adjacent points (see diagram).

Cubic: For cubic interpolation, use Lagrange polynomials to interpolate between surrounding 4 points.
i.e. if desired x ∈ [xj , xj+1] find the Lagrange polynomial interpolating (xj−1, yj−1), (xj , yj), (xj+1, yj+1),
(xj+2, yj+2). Note that if x ∈ [x0, x1] then you need to use (x0, y0), (x1, y1), (x2, y2), (x3, y3) and if
x ∈ [xN−1, xN] use (xN−3, yN−3), (xN−2, yN−2), (xN−1, yN−1), (xN , yN).

2

X X X X X X X1 2 3 4 5 6 7

 four neighbours)

X X X X X X X1 2 3 4 5 6 7

X X X X X X X1 2 3 4 5 6 7

Lagrange
Interpolating
Polynomial

Linear
Interpolation
(Straight lines
 between adjacent
 points)

Cubic
Interpolation
(Use nearest

Figure: Illustrating different interpolation methods.

3

Root Finding

Problem: To solve a nonlinear equation f(x) = 0 (e.g. find the roots of a polynomial, or the solution of
coshx − x3=0).

Newton’s Method

Advantages: Fast, Easy to Implement

Disadvantages: Need to be able to calculate f ′(x), sometimes goes wild and gives wrong answer

1. Start at a point x1 hopefully near the root at x = r, (f(r) = 0).

2. Calculate f1 = f(x1) and f ′

1 = f ′(x1)

3. Draw tangent line between (x1, f1) and new point (x2, 0).
Use equation of line in form

y2 − y1

x2 − x1
= m (gradient)

in our case this gives
0− f1

x2 − x1
= f ′

1,

or rearranging

x2 = x1 −
f ′

1

f1
.

4. Repeat to get a sequence x3, x4,... using

xn+1 = xn − fn

f ′

n

5. Stop when |xn+1 − xn| < δ for some tolerance δ, e.g. δ = 10−6.

Example: Find
√

3 without a calculation

a =
√

3, a2 − 3 = 0.

This suggests
f(x) = x2 − 3, f ′(x) = 2x

so Newton’s method gives

xn+1 = xn − x2
n − 3

2xn
or xn+1 =

x2
n + 3

2xn
.

Start nearby, e.g. x1 = 2.

x2 =
4 + 3

4
=

7

4
, x3 =

(

7
4

)2
+ 3

7
2

, x4 = etc.

Difficulties:

Consider p(x) = x3 − x, this has roots at a = −1, 0, 1.
Try a starting point x1 = 1/2

x2 = x1 −
f1

f ′

1

= x1 −
x3

1 − x1

3x2
1 − 1

=
1

2
−

1
8 − 1

2
3
4 − 1

= −1

4

f(x)

x

x x 12r

Figure: Illustrating the Newton-Raphson algorithm.

this means we have found a root we were not even near!!!

Problem arises whenever |f ′(xn)| is small...the tangent is nearly horizontal, and intersects the origin far
from the starting point.

Secant Method

Advantages: Fast (but slightly slower than Newton’s method), no need to calculate f ′(x).

Disadvantages: Sometimes goes wild and gives wrong answer, need to make two initial guesses.

Slope of secant: m =
f(x2) − f(x1)

x2 − x1

Crosses the x-axis at:
f(x2) − f(x1)

x2 − x1
=

0 − f(x2)

x3 − x2
rearranging x3 = x2 − f(x2)

(

x2 − x1

f(x2) − f(x1)

)

The equation is therefore

xn+1 = xn − f(xn)

(

xn − xn−1

f(xn) − f(xn−1)

)

and this can be used to generate x4, x5, x6, etc. as before.

5

Bisection Method

Advantages: Very robust, always finds the root in the interval.

Disadvantages: Relatively slow to converge. Need starting points either side of root.

1. Start with points a, b known to be either side of the root r. This means that

f(a)f(b) ≤ 0, and if f(a)f(b) = 0, then root r is at a or b.

Set n = 1.

2. If not, define

xn =
a + b

2
, and compute f(xn).

If f(xn) = 0 we have found the root. Stop!

3. Check sign of f(a)f(xn):

if f(a)f(xn) < 0 root is between a and xn so set b = xn, n → n + 1.,

if f(a)f(xn) > 0 root is between xn and b so set a = xn, n → n + 1.

4. Check |a − b|. If |a − b| > δ (tolerance) return to step 2. Otherwise, the final estimate for the root is

xn =
a + b

2
.

How many iterations are needed? Let L0 = |b − a| be the initial interval size and δ be the tolerance.

After N iterations the length of the interval is LN = 2−NL0, as it has been chopped in half N times.

Need to stop the iteration when

2−NL0 < δ, 2N >
L0

δ
, N > log2

(

L0

δ

)

.

6

Numerical Differentation

Problem: Consider a dataset (x1, y1), (x2, y2), ..., (xN , yN) where the xi may not be evenly spaced. The
aim is to find good approximate expressions for the first and second derivatives. That is, we assume that
there exists a smooth function f(x) so that yi = f(xi), and look for approximations to df/dx and d2f/dx2.

Formulae for Numerical Derivatives

First Derivatives

Starting with the definition
df

dx
(x) = lim

h→0

f(x + h) − f(x)

h
,

it is straightforward to make two approximations for df/dx(xi).

f ′

+(xi) =
f(xi+1) − f(xi)

xi+1 − xi
and f ′

−
(xi) =

f(xi) − f(xi−1)

xi − xi−1
.

Notice that f ′

+ is a right-sided derivative and f ′

−
is left-sided.

A better approximation is given by the average of f ′

+ and f ′

−
(centred derivative)

f ′

(2)(xi) =
1

2

(

f ′

+ + f ′

−

)

.

Second Derivatives

The right-sided derivative f ′

+(xi) equals the exact derivative of f at some point ∈ [xi, xi+1]. Can guess that
this is the midpoint (xi+1 + xi)/2, i.e.

f ′

+(xi) ≈
df

dx

(

x =
xi+1 + xi

2

)

Similarly we guess

f ′

−
(xi) ≈

df

dx

(

x =
xi + xi−1

2

)

From these we can write
d2f

dx2
(xi) ≈ f ′′

(2) =
f ′

+(xi) − f ′

−
(xi)

xi+xi+1

2 − xi+xi−1

2

Uniform Grid

Often we have a uniform grid in x, i.e. xi = x0 + ih. What do our forumlae above become?

f ′

+(xi) =
f(xi+1) − f(xi)

h
,

f ′

+(xi) =
f(xi) − f(xi−1)

h
,

f ′

(2)(xi) =
f(xi+1) − f(xi−1)

2h
,

and

f ′′

(2)(xi) =
f ′

+(xi) − f ′

−
(xi)

h
=

f(xi+1) − 2f(xi) + f(xi−1)

h2
.

7

 xixi-1 xi+1

 xi

 xi xi-1
xi-1

Numerical Derivative

 x xxi-2 i+2 i+3

Actual derivative

Slope of

Slope of

f’(xi)

f’ = f()- f()-
-

Slope of
Numerical Derivative f’+

Figure: Illustrating left f ′

−
= (f(xi) − f(xi−1))/(xi − xi−1) and right f ′

+ = (f(xi+1)− f(xi))/(xi+1 − xi) numerical

derivatives.

How accurate are the above approximations?

Consider the simple function f(x) = xN .

We have
f ′(x) = NxN−1, f ′′(x) = N(N − 1)x(N − 2).

Can compare with numerical derivatives. Take x0 = 0, x0 = 1, x0 = 2. Then

f ′

+(x1) =
f(x2) − f(x1)

x2 − x1
=

2N − 1N

1
= 2N − 1.

f ′

−
(x1) =

f(x1) − f(x0)

x1 − x0
=

1N − 0N

1
= 1.

whereas the exact value is f ′(x1) = N . This is equal to f ′

+(x1) (and f ′

−
(x1)) only for N = 1.

Right-sided (f ′

+) and left-sided (f ′

−
) numerical derivatives are exact only for first order polynomials.

Try centred derivatives

f ′

(2)(x1) =
f(x2) − f(x0)

x2 − x1
=

2N − 0N

2
= 2N−1.

This equals f ′(x1) for both N = 1 and 2.

Centred (f ′

(2)) numerical derivatives are exact for second order polynomials.

Comment: Can prove the above statements more generally by taking nxm − 1 = xm − h, xm, and
xm+1 = xm + h.

8

Ordinary Differential Equations

Problem: The aim is to generate a numerical solution for the INITIAL VALUE PROBLEM consisting of
the ordinary differential equation (∗) and the initial condition (∗∗)

dy

dx
= f(y, x) (∗), y(x0) = Y (∗∗).

The numerical solution will be defined only at a discrete set of points (xi, yi), with yi ≈ y(xi) (where y(x) is
the true solution). Note that interpolation may be used to estimate the solution at an intermediate point.

Reminder: It is straightforward to find analytic solutions of (*) when f(y, x) is separable (f(y, x) =
f1(x)f2(y), use SEPARATION) or f(y, x) is linear in y, (f(y, x) = F1(x)y + F2(x), use INTEGRATING
FACTOR). Numerical solutions are often needed when f(y, x) is nonlinear and non-separable.

Example 1: separation

dy

dx
= x2y3 y(1) = 1.
∫

dy

y3
=

∫

x2dx

− 1

2y2
=

1

3
x3 + c y(1) = 1, so c = −5

6

y =

√

3

5 − 2x3

Example 2: integrating factor

dy

dx
= yx + x3 y(0) = 1.

multiply equation by q(x)

q
dy

dx
− yqx = qx3.

use definition of integrating factor

dq

dx
= −qx, solving q(x) = exp−x2/2.

gives

q
dy

dx
+

dq

dx
y =

d

dx
(yq) =

d

dx

(

ye−x2/2
)

= x3e−x2/2.

integrating
ye−x2/2 = −(2 + x2)e−x2/2 + c y(0) = 1, so c = 2.

y = −2 − x2 + 2ex2/2.

Method 1: Euler’s Method

Aim is to get a solution on a regular grid xi = x0 + ih (h is defined to be the stepsize). Simplest method is
to use the RIGHT-SIDED numerical derivative defined above. That is, we replace (∗) with

yi+1 − yi

h
= f(yi, xi).

rearranging we get

yi+1 = yi + hf(yi, xi) with y0 = Y. Euler’s Method

Euler’s method is used to generate a sequence {yi} that gives the numerical solution of the equation at
each point xi (see diagram).

9

t0 t1 t2

h

y(t)

Numerical
Solution

Figure: Illustrating the actual and numerical solutions of an ordinary differential equation.

Method 2: Midpoint Method, or Second-order Runge-Kutta Method (RK2)

As CENTRED numerical derivatives are more accurate than right-sided ones, these may be used to derive
a more accurate method for solving the initial value problem (∗) + (∗∗), i.e.

yi+1 − yi

h
= f(yi+1/2, xi+1/2).

Problem here is that we don’t know the numerical solution at yi+1/2 ≈ y(xi+1/2) (note that xi+1/2 =
xi + h/2). However, we can estimate this using Euler’s method by setting

yi+1/2 = yi +
h

2
f(yi, xi)

so explicitly, we have,

yi+1 = yi + hf(yi +
h

2
f(yi, xi), xi + h/2) y0 = Y Midpoint (RK2) Method

This formula can be used to generate a sequence {yi}, that can be shown to have higher accuracy in the
limit of small h compared with Euler’s method.

Systems of ODEs

Note that two coupled ordinary differential equations (+initial conditions)

dy

dx
= f(y, z, x), y(x0) = Y

dz

dx
= g(y, z, x), z(x0) = Z

10

can be solved together straighforwardly (e.g. using Euler’s method)

yi+1 = yi + hf(yi, zi, xi), y0 = Y

zi+1 = zi + hg(yi, zi, xi), z0 = Z.

These generate sequences {yi} and {zi}, the numerical solutions of the equations. The same principle can
be extended to a system of N equations.

Higher order ODEs

Higher order differential equations may be solved by tranforming them into systems of first order equations
like those above. We will illustrate this by considering the general second order equation (with 2 initial
conditions)

d2y

dx2
= f(

dy

dx
, y, x) y(x0) = Y,

dy

dx
(x0) = Z.

To solve this equation we set the auxillary variable z = dy/dx, and replace the above problem with two
equivalent first order equations in y and z.

dy

dx
= z y(x0) = Y

dz

dx
= f(z, y, x) z(x0) = Z.

This is an example of a system of first order ODEs like those described above and can be solved in the usual
way, e.g. using Euler’s method

yi+1 = yi + hzi, y0 = Y,

zi+1 = zi + hf(yi, zi, xi), z0 = Z.

These generate sequences {yi} - the numerical solution of the equation (yi ≈ y(xi)) and {zi}, where
zi ≈ dy/dx (xi).

