
8.5 Diagonalization of symmetric matrices

Definition. Let A be a square matrix of size n. A is a symmetric matrix
if AT = A

Definition. A matrix P is said to be orthogonal if its columns are mutually
orthogonal.

Definition. A matrix P is said to be orthonormal if its columns are unit
vectors and P is orthogonal.

Proposition An orthonormal matrix P has the property that

P−1 = P T .

Theorem If A is a real symmetric matrix then there exists an orthonormal
matrix P such that

(i) P−1AP = D, where D a diagonal matrix.

(ii) The diagonal entries of D are the eigenvalues of A.

(iii) If λi 6= λj then the eigenvectors are orthogonal.

(iv) The column vectors of P are linearly independent eigenvectors of A,
that are mutually orthogonal.

Example. Recall

A =

 0 1 1
1 0 1
1 1 0

 .

(i) Find the eigenvalues and eigenvectors of A.

(ii) Is A diagonalizable?

(iii) Find an orthonormal matrix P such that P T AP = D, where D is a
diagonal matrix.

Solution: We have found the eigenvalues and eigenvectors of this matrix
in a previous lecture.



(i), (ii) Observe that A is a real symmetric matrix. By the above theorem, we
know that A is diagonalizable. i.e. we will be able to find a sufficient
number of linearly independent eigenvectors.
The eigenvalues of A were; −1, 2. We found two linearly independent

eigenvectors corresponding to λ1 = −1: ~v1 =

 −1
1
0

, ~v2 =

 −1
0
1

.

And one eigenvector corresponding to λ2 = 2:

 1
1
1

.

(iii) We now want to find an orthonormal diagonalizing matrix P .
Since A is a real symmetric matrix, eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal. 1

1
1

 is orthogonal to

 −1
1
0

 and

 −1
0
1

.

However the eigenvectors corresponding to eigenvalue λ1 = −1, ~v1 = −1
1
0

 and ~v2 =

 −1
0
1

 are not orthogonal to each other, since we

chose them from the eigenspace by making arbitrary choices*. We will



have to use Gram Schmidt to make the two vectors orthogonal.

~u1 = ~v1

Proj~u1
~v2 =

((−1, 1, 0).(−1, 0, 1))

2

 −1
1
0


=

1

2

 −1
1
0


~u2 = ~v2 − Proj~u1

~v2

=

 −1
0
1

−

 −1/2
1/2
0


=

 −1/2
−1/2

1


We now have a set of orthogonal vectors:

{

 1
1
1

 ,

 −1
1
0

 ,

 −1/2
−1/2

1

}.
We normalize the vectors to get a set of orthonormal vectors:

{

 1/
√

3

1/
√

3

1/
√

3

 ,

 −1/
√

2

1/
√

2
0

 ,

 −1/
√

6

−1/
√

6

2/
√

6

}.
We are now finally ready to write the orthonormal diagonalizing matrix:

P =

 1
√

3 −1/
√

2 −1/
√

6

1
√

3 1/
√

2 −1/
√

6

1
√

3 0 2/
√

6


and the corresponding diagonal matrix D

D =

 2 0 0
0 −1 0
0 0 −1

 .



We will now verify that P T AP = D.

AP =

 0 1 1
1 0 1
1 1 0

  1
√

3 −1/
√

2 −1/
√

6

1
√

3 1/
√

2 −1/
√

6

1
√

3 0 2/
√

6


=

 2
√

3 1/
√

2 1/
√

6

2
√

3 −1/
√

2 1/
√

6

2
√

3 0 −2/
√

6


PD =

 1
√

3 −1/
√

2 −1/
√

6

1
√

3 1/
√

2 −1/
√

6

1
√

3 0 2/
√

6

  2 0 0
0 −1 0
0 0 −1


=

 2
√

3 1/
√

2 1/
√

6

2
√

3 −1/
√

2 1/
√

6

2
√

3 0 −2/
√

6


AP = PD (1)

Since the columns of P are linearly independent, P has non-zero de-
terminant and is therefore invertible. We multiply (1) by P−1 on both
sides.

P−1AP = P−1PD,

= ID

= D (2)

Also since P is orthonormal, we have

P−1 = P T

i.e. PP T = I = P T P . 1
√

3 −1/
√

2 −1/
√

6

1
√

3 1/
√

2 −1/
√

6

1
√

3 0 2/
√

6

  1
√

3 1/
√

3 1/
√

3

−1
√

2 1/
√

2 0

−1
√

6 −1/
√

6 2/
√

6

 =

 1 0 0
0 1 0
0 0 1

 .

Therefore from (2) and since P−1 = P T we finally get the relation

P T AP = D.



Note. *:Look back at how we selected the eigenvecors ~v1 and ~v2; we chose
x2 = 1, x3 = 0 to get ~v1 and x2 = 0, x3 = 1 to get ~v2. If we had chosen
x2 = 1, x3 = 0 to get ~v1 and x2 = −1/2, x3 = 1 to get ~v2, then ~v1 and ~v2

would be orthogonal. However it is much easier to make arbitrary choices
for x1 and x2 and then use the Gram Schmidt Process to orthogonalize the
vectors as we have done in this example.
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