
Integral bases and translation

We wish to investigate the effect of a change of variable x 7→ x− r on a basis of algebraic integers.
That is, in an algebraic number field K = Q[α] of degree d, if the primitive element α is an algebraic
integer, then we have paid particular attention to the basis B = {1, α, α2, . . . , αd−1} of algebraic
integers. One word of caution: when we refer to a basis of algebraic integers, we are referring to a
basis of the Q-vector space K whose elements are algebraic integers. On the other hand, somewhat
confusingly, the name integral basis is reserved for a basis of algebraic integers that is furthermore
a Z-basis of the Z-module OK . That is, a Q−basis {b1, b2, . . . , bd} of K is an integral basis if the
bi ∈ OK and any x ∈ OK can be written

Σnibi

for ni ∈ Z. (Note that the uniqueness of the ni follows from the fact that the bi form a Q-basis for
K.)

For examples where many significant computations in the number field can be done readily by
hand, it is important to produce situations where B as above is an integral basis. Recall that this
happens if and only if the discriminant ∆(B) is minimal among discriminants of integral basis. We are
interested in the effect of the translation α 7→ β = a + r for an r ∈ Z. Put B′ = {1, β, β2, · · · , βd−1}.
Using theorem 102, it was shown in Corollary 105 that

∆(B) = ∆(B′)

Here is a more informative way to see this equality (which has been suggested in the Practical
Summary). We examine the change of basis matrix from B to B′. Then the formula

βi = αi + iαi−1r +
(

i

2

)
αi−2r2 + · · ·+ iαri−1 + ri

for each i shows that the matrix has the form

P =




1 ∗ ∗ · · · ∗
0 1 ∗ ∗
0 0 1
0 0 0
· · ·




that is, upper triangular with 1’s on the diagonal. In particular, it is an integral matrix with deter-
minant 1. Since

∆(B′) = det(P )2∆(B)

this clearly implies the equality of discriminants. But more importantly, its inverse P−1 is also integral.
That is to say,

(*) we can also write the αi an a linear combination of the βi with integral coefficients.

This is a direct proof that B is an integral basis if and only if B′ is an integral basis. There are
further consequences. Suppose x ∈ K. We examine the coefficients with respect to the two bases:

x = Σciα
i = Σc′iβ

i

Now suppose the coefficients {c0, c1, . . . , cd−1} with respect to the basis B have the properties:
(1) for all i, ci = ai/p with ai ∈ Z;
(2) some ai/p /∈ Z.
Then the coefficients {c′0, c′1, . . . , c′d−1} with respect to the basis B′ have the same two properties.
Property (1) is obvious from property (*). Similarly, if all c′i ∈ Z, then all ci ∈ Z, again by property

(*), establishing (2) for B′. These observations can be very useful for finding integral bases.
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Consider the case of K = Q[α] where α is a root of the irreducible polynomial f(x) = x4 − p for
p ≡ 3 mod 4. The discriminant is easily computed to be

∆(B) = N(f ′(α)) = N(4α3) = 44(−p)3

As usual, to see if B is an integral basis, we need to check for the possibility of algebraic integers
among

Σciα
i

where the ci = k/l for l a prime such that l2|∆(B)| and 0 ≤ k < l. The possible l’s are of course l = 2
and l = p. The possibility of l = p is easily dispensed with using the convenient theorem 107. But
the possibility of l = 2 should give us pause. This we handle as follows: Consider β = α − 1. Then
the minimal polynomial for β is

g(x) = (x + 1)4 − p = x4 + 4x3 + 6x2 + 4x + 1− p

Now, the assumption p ≡ 3 mod 4 is easily seen to imply that g(x) is Eisenstein for the prime 2.
Suppose there were an algebraic integer of the form

c0 + c1α + c2α
2 + c3α

3

with ci = k/2, k = 0 or k = 1 and some k 6= 0. There would be an algebraic integer of the form

c′0 + c′1β + c′2β
2 + c′3β

3

with the c′i having the same properties. This is impossible by theorem 107. Therefore, the prime 2 is
also ruled out and B = {1, α, α2, α3} is an integral basis.
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