Integral bases and translation

We wish to investigate the effect of a change of variable z +— x — 7 on a basis of algebraic integers.
That is, in an algebraic number field K = Q[«] of degree d, if the primitive element « is an algebraic
integer, then we have paid particular attention to the basis B = {1,a,a?,...,a?" !} of algebraic
integers. One word of caution: when we refer to a basis of algebraic integers, we are referring to a
basis of the Q-vector space K whose elements are algebraic integers. On the other hand, somewhat
confusingly, the name integral basis is reserved for a basis of algebraic integers that is furthermore
a Z-basis of the Z-module Og. That is, a Q—basis {by,bs,...,bs} of K is an integral basis if the
b; € Ok and any = € Ok can be written
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for n; € Z. (Note that the uniqueness of the n; follows from the fact that the b; form a Q-basis for
K.)

For examples where many significant computations in the number field can be done readily by
hand, it is important to produce situations where B as above is an integral basis. Recall that this
happens if and only if the discriminant A(B) is minimal among discriminants of integral basis. We are
interested in the effect of the translation a +— 3 = a +r for an r € Z. Put B’ = {1,,5%,--- , 34" 1}.
Using theorem 102, it was shown in Corollary 105 that

A(B) = A(B')

Here is a more informative way to see this equality (which has been suggested in the Practical
Summary). We examine the change of basis matrix from B to B’. Then the formula

7

B =al +iat "l + (2

>O¢l27“2+"'+i047"21 _'_,r,z

for each 7 shows that the matrix has the form
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that is, upper triangular with 1’s on the diagonal. In particular, it is an integral matrix with deter-
minant 1. Since

A(B') = det(P)*A(B)

this clearly implies the equality of discriminants. But more importantly, its inverse P~! is also integral.
That is to say,

(*) we can also write the o' an a linear combination of the 3° with integral coefficients.

This is a direct proof that B is an integral basis if and only if B’ is an integral basis. There are
further consequences. Suppose = € K. We examine the coefficients with respect to the two bases:
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Now suppose the coefficients {cg, c1, ..., cq4—1} with respect to the basis B have the properties:
(1) for all 4, ¢; = a;/p with a; € Z;
(2) some a;/p ¢ Z.
Then the coefficients {c(,c],...,c,_;} with respect to the basis B’ have the same two properties.
Property (1) is obvious from property (*). Similarly, if all ¢; € Z, then all ¢; € Z, again by property
(*), establishing (2) for B’. These observations can be very useful for finding integral bases.



Consider the case of K = Q[a] where « is a root of the irreducible polynomial f(x) = 2* — p for
p =3 mod 4. The discriminant is easily computed to be

A(B) = N(f'(@)) = N(40”) = 4*(-p)?

As usual, to see if B is an integral basis, we need to check for the possibility of algebraic integers
among 4
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where the ¢; = k/I for [ a prime such that [?|A(B)| and 0 < k < I. The possible I’s are of course [ = 2
and [ = p. The possibility of [ = p is easily dispensed with using the convenient theorem 107. But
the possibility of [ = 2 should give us pause. This we handle as follows: Consider 5 = o — 1. Then
the minimal polynomial for 3 is

gx)=(x+ 1) —p=a* +42® + 62> + 4z +1—p

Now, the assumption p =3 mod 4 is easily seen to imply that g(z) is Eisenstein for the prime 2.
Suppose there were an algebraic integer of the form

co+cra+ 02a2 + 03a3
with ¢; = k/2, k =0 or k = 1 and some k # 0. There would be an algebraic integer of the form
¢+ B+ cyF” + 5

with the ¢; having the same properties. This is impossible by theorem 107. Therefore, the prime 2 is
also ruled out and B = {1, a,a?,a%} is an integral basis.



