4 Linear algebra

4.6 Linear independence

4.6.1 Linear combinations

We met the idea of a linear combination of column vectors in chapter 3. Here it is for elements of an arbitrary vector space.

Definition 4.6.1.

Let V be a vector space and 𝐯1,,𝐯nV. A linear combination of 𝐯1,,𝐯n is an element of V of the form

λ1𝐯1+λ2𝐯2++λn𝐯n

where the λi are scalars.

4.6.2 Linear independence

Definition 4.6.2.

Let V be a vector space.

  • A sequence 𝐯1,𝐯n of elements of V is linearly independent if and only if the only scalars λ1,,λn such that i=1nλi𝐯i=𝟎V are λ1==λn=0.

  • A sequence which is not linearly independent is called linearly dependent.

It is important that linear independence is a property of sequences (not sets) of vectors. Sequences have a particular order, and they can contain the same element multiple times.

Checking whether elements of a vector space are linearly independent is simple. You just have to try and find a linear combination that gives the zero vector where not all the scalars are zero. If you can do it, the sequence is linearly dependent, if you can’t it is linearly independent. When we’re talking about vectors in 𝔽n, or matrices, this is just solving linear equations.

4.6.3 Examples of linear (in)dependence

Example 4.6.1.

𝐮=(10), 𝐯=(01),𝐰=(11) are not linearly independent in 2, because 1×𝐮+1×𝐯+(1)×𝐰=𝟎.

Example 4.6.2.

𝐮=(11),𝐯=(11) are linearly independent in 2. For if α𝐮+β𝐯=(00) then (α+βαβ)=(00). This is a system of linear equations:

α+β =0
αβ =0

For such a simple system it’s easy to see that the only solution is α=β=0. This tells you that the only solution to α𝐮+β𝐯=𝟎 is α=β=0, which is the definition of linear independence for 𝐮,𝐯.

Example 4.6.3.

(10) and (01) are linearly independent in 2. You can prove this in a similar (but easier) way to the previous example.

More generally if 𝐞i is the height n column vector with 0 everywhere except 1 at position i, then the sequence 𝐞1,,𝐞n is linearly independent.

Example 4.6.4.

In , the vector space of all functions , I claim that the functions f(x)=cos(x) and g(x)=sin(x) are linearly independent. Suppose that αf+βg=0, that is, suppose αcos(x)+βsin(x)=0 for all x.

Take x=0. Since αcos(0)+βsin(0)=0 we get α=0. Now take x=π/2 to get βsin(π/2)=0, that is β=0. We have shown α=β=0 and so these functions are linearly independent.

Often it turns out that deciding whether a sequence of vectors is linearly independent is equivalent to seeing whether a system of linear equations has only the solution where every variable is zero — so you can apply the methods we learned in chapter 3.