Functionals leading to special cases

When the integrand F of the functional in our typical calculus of variations problem does not depend explicitly on x, for example if

I(y) = $\displaystyle \int_{0}^{1}$(y' - y)2dx,    

extremals satisfy an equation called the Beltrami identity which can be easier to solve than the Euler-Lagrange equation.

Theorem 2   If I(Y) is an extremum of the functional

I = $\displaystyle \int_{a}^{b}$ F(y, y') dx

defined on all functions yC2[a, b] such that y(a) = A, y(b) = B then Y(x) satisfies

F - y'$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$ = C (3)

for some constant C.

Definition 6 ([*])   is called the Beltrami identity or Beltrami equation.

Proof. Consider

% latex2html id marker 1996
$\displaystyle {\frac{{{\rm d}}}{{{\rm d} x}}}$$\displaystyle \left(\vphantom{ F- y'\frac{\partial F}{\partial y'}
}\right.$F - y'$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$$\displaystyle \left.\vphantom{ F- y'\frac{\partial F}{\partial y'}
}\right)$ = % latex2html id marker 2000
$\displaystyle {\frac{{{\rm d} F}}{{{\rm d} x}}}$ - y'$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$ - y'% latex2html id marker 2003
$\displaystyle {\frac{{{\rm d}}}{{{\rm d} x}}}$$\displaystyle \left(\vphantom{ \frac{\partial F}{\partial y'} }\right.$$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$$\displaystyle \left.\vphantom{ \frac{\partial F}{\partial y'} }\right)$. (4)

Using the chain rule to find the x-derivative of F(y(x), y'(x)) gives

% latex2html id marker 2010
$\displaystyle {\frac{{{\rm d} F}}{{{\rm d} x}}}$ = y'$\displaystyle {\frac{{\partial
F}}{{\partial y}}}$ + y'$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$

so that ([*]) is equal to

y'$\displaystyle {\frac{{\partial
F}}{{\partial y}}}$ + y′′$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$ - y′′$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$ - y'% latex2html id marker 2018
$\displaystyle {\frac{{{\rm d}}}{{{\rm d} x}}}$$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$ = y'% latex2html id marker 2020
$\displaystyle \left(\vphantom{ \frac{\partial F}{\partial y} - \frac{{\rm d}}{{\rm d} x}\frac{\partial
F}{\partial y'} }\right.$$\displaystyle {\frac{{\partial
F}}{{\partial y}}}$ - % latex2html id marker 2022
$\displaystyle {\frac{{{\rm d}}}{{{\rm d} x}}}$$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$% latex2html id marker 2024
$\displaystyle \left.\vphantom{ \frac{\partial F}{\partial y} - \frac{{\rm d}}{{\rm d} x}\frac{\partial
F}{\partial y'} }\right)$

Since Y is an extremal, it is a solution of the Euler-Lagrange equation and so this is zero for y = Y. If something has zero derivative it is a constant, so Y is a solution of

F - y'$\displaystyle {\frac{{\partial F}}{{\partial y'}}}$ = C    

for some constant C. $\qedsymbol$

Exercise 5 (Exercise 1 revisited)   : Use the Beltrami identity to find an extremal of

I(y) = $\displaystyle \int_{0}^{1}$(y' - y)2 dx,      y(0) = 0, y(1) = 2,

Answer:

y = f (x) = 2$\displaystyle {\frac{{\sinh{x}}}{{\sinh{1}}}}$

(again).