HYPERBOLIC SURFACES AND TEICHMÜLLER SPACES (EXERCISE SHEET)

A reference I like for Teichmuller spaces A primer on mapping class groups, freely available at

http://euclid.nmu.edu/ joshthom/Teaching/MA589/farbmarg.pdf

Exercises marked with one star are challenging, those marked with two stars are very difficult.

1. WARM-UP EXERCISES

These exercises are a warm-up in Riemann surfaces, hyperbolic geometry and the topology of surfaces.

Exercise 1. Show that the annuli $\mathbb{C}/\{z \mapsto z+1\}$ and $\mathbb{H}/\{z \mapsto z+1\}$ are not biholomorphic.

Exercise 2. Show that if a group of isometries $\Gamma \subset PSL(2, \mathbb{R})$ acts properly discontinuously on \mathbb{H} , then \mathbb{H}/Γ is a hyperbolic surface.

Exercise 3. Show that the group of biholomorphisms of \mathbb{H} is exactly the set of maps of the form

$$z\longmapsto \frac{az+b}{cz+d}$$

with $a, b, c, d \in \mathbb{R}$ and ad - bc > 0.

Exercise 4. Let Σ be a complete Riemannian surface with constant curvature -1. Show that there exists $\Gamma \subset PSL(2, \mathbb{R})$ acting properly discontinuously on \mathbb{H} such that Σ is isometric to \mathbb{H}/Γ .

Exercise 5. Show that the set $Homeo_0(\Sigma)$ of homeomorphisms of a surface Σ which are isotopic to the identity is a normal subgroup of $Homeo(\Sigma)$

In the rest of the exercise sheet $Mod(\Sigma)$ denotes the group $Homeo(\Sigma)/Homeo_0(\Sigma)$. It is often referred to as the **mapping class group**.

Exercise 6. Assume that Σ is the torus. Show that $Mod(\Sigma)$ admits a surjective group homomorphism

$$\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{SL}(2,\mathbb{Z}).$$

(This homomorphism is actually an isomorphism).

Exercise* 7. Let Σ be a genus $g \ge 2$ surface.

(1) Considering the action of a homeomorphism on $H_1(\Sigma, \mathbb{Z})$, show that there is a group morphism

$$\operatorname{Mod}(\Sigma) \longrightarrow \operatorname{Sp}(2g, \mathbb{Z})$$

where $\operatorname{Sp}(2g,\mathbb{Z})$ is the group of symplectic matrices with integer coefficients.

- (2) Show that this homomorphism is not injective (consider particular Dehn twists).
- (3) (Rather difficult). Show that this homomorphism is surjective (use Dehn twists and generation properties of $\operatorname{Sp}(2g, \mathbb{Z})$, which you might need to research!).

Exercise 8. Find a topological surface Σ which carries a Riemann surface structure covered by \mathbb{C} and one covered by \mathbb{H} .

Exercise 9. Let Σ_1 be a Riemann surface of genus 1 and Σ_g a Riemann surface of genus $g \geq 2$. Show that any holomorphic map

 $f: \Sigma_1 \longrightarrow \Sigma_2$ is constant.

2. CHORE EXERCISES

2.1. Hyperbolic surfaces.

- **Exercise 10.** (1) Recall that a triangle T in hyperbolic space satisfies that its interior angles sum up to π Area(T). Derive an analogous formula relating the interior angles of an n-gon and its area.
 - (2) Construct a hyperbolic triangle of interior angles $(\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4})$.
 - (3) Using the previous question, construct a hyperbolic octogon all of whose interior angles are $\frac{\pi}{2}$.
 - (4) Show that if (x_1, y_1) and (x_2, y_2) are two pairs of points in \mathbb{H} such that $d(x_1, y_1) = d(x_2, y_2)$, there exists a unique orientation-preserving isometry T such that $T(x_1) = x_2$ and $T(y_1) = y_2$.
 - (5) Derive from the previous questions the construction of a hyperbolic surface of genus 2.

Exercise 11. Show that a subgroup Γ of $PSL(2, \mathbb{R})$ acts properly discontinuously on \mathbb{H} if and only if it is discrete and doesn't contain elliptic elements other than the identity.

Exercise 12. Let Σ be a topological surface and let $\rho : \pi_1 \Sigma \longrightarrow PSL(2, \mathbb{R})$ be a representation. Show that the two following statements are equivalent

- ρ is faithful and $\rho(\pi_1 \Sigma)$ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- The quotient $\mathbb{H}/\rho(\pi_1\Sigma)$ is a hyperbolic surface.
- 2.2. Genus 1.
- **Exercise 13** (Genus 1 complex curves). (1) Let α and β two complex numbers linearly independent over \mathbb{R} . Show that the quotient of \mathbb{C} by the group $\mathbb{Z} \cdot \alpha \oplus \mathbb{Z} \cdot \beta$ acting by translations is a Riemann surface homeomorphic to a 2-torus (the topological space $S^1 \times S^1$).
 - (2) Let Σ be a genus 1 Riemann surface (that is homeomorphic to a 2-torus). Show that Σ is isomorphic to the quotient of \mathbb{C} by a group of translation as above.

(Hint : What are the subgroups of $PSL(2, \mathbb{R})$ isomorphic to \mathbb{Z}^2 ?)

Exercise* 14 (The modular surface is the moduli space of Riemann surfaces of genus 1). Consider \mathcal{T}_1 the Teichmuller space of the genus 1 surface.

(1) Let $\Sigma = S^1 \times S^1$ be the genus 1 compact orientable topological surface and let us endow it with two Riemann surface structures \mathcal{R}_1 and \mathcal{R}_2 . We have shown in the previous exercise that there exist isomorphisms φ_1 (resp. φ_2) between \mathcal{R}_1 (resp. \mathcal{R}_2) and $\mathbb{C}/\mathbb{Z} \cdot \alpha_1 \oplus \mathbb{Z} \cdot \beta_1$ (resp. $\mathbb{C}/\mathbb{Z} \cdot \alpha_2 \oplus \mathbb{Z} \cdot \beta_2$). Show that \mathcal{R}_1 and \mathbb{R}_2 represent the same point in Teichmüller space if and only if the homology morphisms

$$(\varphi_1)_* : \pi_1 \Sigma \longrightarrow \mathbb{Z} \cdot \alpha_1 \oplus \mathbb{Z} \cdot \beta_1$$

and

$$(\varphi_2)_*: \pi_1 \Sigma \longrightarrow \mathbb{Z} \cdot \alpha_2 \oplus \mathbb{Z} \cdot \beta_2$$

if and only if there exists a non-constant complex affine map $f := z \mapsto az + b$ such that $(\varphi_2)_* = f \circ (\varphi_1)_*$.

- (2) Show that the Teichmüller space of the genus 1 surface is homeomorphic to $\mathbb{H} := \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$
- (3) Let (α_1, β_1) and (α_2, β_2) two pairs of \mathbb{R} linearly-independent, directly oriented vectors in \mathbb{C} . Show that $\mathbb{Z} \cdot \alpha_1 \oplus \mathbb{Z} \cdot \beta_1 = \mathbb{Z} \cdot \alpha_2 \oplus \mathbb{Z} \cdot \beta_2$ if and only if there exists $A \in SL(2, \mathbb{Z})$ such that $(\alpha_2, \beta_2) = A \cdot (\alpha_1, \beta_1)$.
- (4) Show that the moduli space of genus 1 surfaces is homeomorphic to the modular surface

$\mathbb{H}/\mathrm{PSL}(2,\mathbb{Z})$

where $PSL(2,\mathbb{Z})$ acts on \mathbb{H} by homographies.

2.3. Construction of Teichmuller space and moduli space. The exercises are here to fill the gaps in the construction of \mathcal{T}_q and \mathcal{M}_q discussed in the lecture.

Exercise* 15 (Pair of pants). Let l_1, l_2 and l_3 be three positive real numbers. Construct a hyperbolic metric on a sphere with three boundary components such that:

- (1) each boundary component is totally geodesic;
- (2) the respective lengths of the boundary components are l_1, l_2 and l_3 .
- Such a hyperbolic surface with totally geodesic boundary is called a pair of pants.

Hint : consider a carefully chosen hyperbolic octogon.

Exercise* 16. Show that the pair of pants with fixed boudary lengths (l_1, l_2, l_3) is unique up to isometry.

Hint : *learn* a *bit* of *hyperbolic trigonometry*.

Exercise 17 (Fenchel-Nielsen coordinates). Using pairs of pants, find a parametrisation of \mathcal{T}_g with 6g - 6 parameters for $g \geq 2$.

Exercise* 18 (Moduli space is an orbifold). Let Σ_g be the compact surface of genus $g \geq 2$. We will assume that \mathcal{T}_g the Teichmuller space is homeomorphic to \mathbb{R}^{6g-6} .

- (1) Show that $\operatorname{Mod}(\Sigma_g)$ acts on \mathcal{T}_g .
- (2) Let (Σ_g, h) be a Riemannian metric on Σ_g of negative curvature on Σ_g . Show that for all L > 0 the set

 $\{\gamma \text{ closed geodesic of length less than } L\}$

is finite.

- (3) Show that the action of $Mod(\Sigma_g)$ on \mathcal{T}_g is properly discontinuous.
- (4) Show that \mathcal{M}_q is an orbifold of dimension 6g g.

Exercise* 19. Show that the moduli space of compact Riemann surfaces of genus $g \ge 2$ is not compact by constructing a sequence of Riemann/hyperbolic surfaces of genus 2 escaping all compact sets of the moduli space.

3. Misc

3.1. Algebraic curves.

Exercise 20.** The goal of this exercise is to show that any Riemann surface S is biholomorphic to a projective curve in $\mathbb{C}P^3$. We assume the existence of a non-constant meromorphic function f.

- (1) Show that f is transcendent on \mathbb{C} .
- (2) (That's the difficult part, which you can skip) Show that the degree of any meromorphic function g on $\mathbb{C}(f)$ is finite. (Hint : consider symmetric functions of local inverses of f)
- (3) Show that there is a non-constant holomorphic map $S \mapsto CP^2$ mapping S to the zero set of a polynomial.
- (4) (If you know how to blow things up). Show that S is biholomorphic to an a smooth projective curve in $\mathbb{C}P^3$.

Exercise 21.** Show that any biholomorphism between smooth projective curves is actually algebraic. (You can use without proof the fact that any meromorphic function on a smooth projective curve is algebraic, and you can also prove it!)

Exercise 22. Let Σ be a topological surface and let $\rho : \pi_1 \Sigma \longrightarrow \text{PSL}(2, \mathbb{R})$ be a representation which is discrete and faithful. Do we necessarily have that $\mathbb{H}/\rho(\pi_1 \Sigma)$ is homeomorphic to Σ ?

Exercise 23. Let Σ be a closed topological surface and let $\rho : \pi_1 \Sigma \longrightarrow \text{PSL}(2, \mathbb{R})$ be a representation which is discrete and faithful. Show that $\mathbb{H}/\rho(\pi_1 \Sigma)$ is homeomorphic to Σ .

3.2. Spaces of representations. Let Γ_g be the fundamental group of a genus $g \ge 2$ compact orientable surface. Recall that Γ_g admits the following presentation

$$\Gamma_g := \langle a_1, b_1, \cdots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = 1 \rangle$$

where $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$.

Exercise* 24. Character varieties and Teichmüller space

(1) Show that the set

 $\{\rho: \Gamma_a \longrightarrow \mathrm{SL}(2,\mathbb{R}) | \rho \text{ is a group homomorphism} \}$

identifies with an smooth affine variety of $M(2,\mathbb{R})^g \simeq (\mathbb{R}^4)^g$ of dimension 6g-3.

(2) Show that the subset χ_{irr} of

 $\{\rho: \Gamma_q \longrightarrow \mathrm{SL}(2,\mathbb{R}) | \rho \text{ is a group homomorphism} \}$

made of irreducible representation

- (3) Show that the quotient of χ_{irr} by the action of $SL(2,\mathbb{R})$ by conjugation is a 6g-6 dimensional manifold.
- (4) Show that \mathcal{T}_g openly injects itself in the quotient of χ_{irr} by the action of $\mathrm{PSL}(2,\mathbb{R})$ by conjugation. (Actually \mathcal{T}_g is one of the finitely many connected components of $\mathrm{PSL}(2,\mathbb{R})$, but that's quite hard to prove).

Exercise* 25. Let Σ be a sphere with 3 points removed.

(1) Show that the fundamental group of Σ is the free group on 2 generators.

- (2) Let a and b be two generators of the fundamental group Σ representing two simple closed curves going around two different punctures. Let ρ_1 and $\rho_2 : \pi_1 \Sigma \longrightarrow SL(2, \mathbb{R})$ such that $Tr(\rho_1(a)) = Tr(\rho_2(a))$, $Tr(\rho_1(b)) = Tr(\rho_2(b))$ and $Tr(\rho_1(ab)) = Tr(\rho_2(ab))$. Show that ρ_1 and ρ_2 are conjugate in $SL(2, \mathbb{R})$.
- (3) Show that the space of irreducible representation of $\pi_1\Sigma$ into $PSL(2,\mathbb{R})$ up to conjugation is naturally isomorphic to an affine variety. Hint: If A and B are two matrices in $SL(2,\mathbb{R})$, there is a polynomial relation between Tr(A), Tr(B) and Tr(AB).