3C25-2003

UPDATES Corrections to notes/handouts

A.H. Harker

Physics and Astronomy
UCL

- Lecture 9

\square Phonon spectra of real solids. In general: N atoms in the unit cell $\rightarrow 3$ acoustic branches and $3(N-1)$ optical branches (not $3 N$ acoustic branches as in original version).

■ Lecture 11
\square Density of states in 3-D and the Debye frequency. An unfortunate placement of two equations had run them together: instead of

$$
N=\int_{0}^{\omega_{\mathrm{D}}} \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}} \mathrm{~d} \omega=\frac{V}{6 \pi^{2}} \frac{\omega_{\mathrm{D}}^{3}}{v^{3}} \omega_{\mathrm{D}}^{3}=\frac{6 N \pi^{2}}{V} v^{3}
$$

you should have

$$
N=\int_{0}^{\omega_{\mathrm{D}}} \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}} \mathrm{~d} \omega=\frac{V}{6 \pi^{2}} \frac{\omega_{\mathrm{D}}^{3}}{v^{3}} \quad \omega_{\mathrm{D}}^{3}=\frac{6 N \pi^{2}}{V} v^{3}
$$

\square Debye theory of the specific heat:

$$
\begin{aligned}
C_{V} & =S k_{\mathrm{B}} \frac{3 N \hbar^{3}}{k_{\mathrm{B}}^{3} \Theta_{\mathrm{D}}^{3}} \frac{k_{\mathrm{B}}^{3} T^{3}}{\hbar^{3}} \int_{0}^{x_{\mathrm{D}}} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} \mathrm{~d} x \\
& =3 N S k_{\mathrm{B}} \frac{T^{3}}{\Theta_{\mathrm{D}}^{3}} \int_{0}^{x_{\mathrm{D}}} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} \mathrm{~d} x
\end{aligned}
$$

the original version had an intrusive v^{3} in the denominator in the first line.

■ Lecture 21
\square Section 8.3.3 omitted a factor of \hbar in two equations, which should read:

$$
v_{h}=\frac{1}{\hbar} \nabla_{\mathbf{k}_{h}} E_{h}
$$

and

$$
v_{h}=-\frac{1}{\hbar} \nabla_{\mathbf{k}_{e}}\left(-E_{e}\right)=v_{e}
$$

\square The last equation conflated expressions for current and conductivity. The current is the sum of electron and hole currents,

$$
J=-e n_{e} v_{e}+e n_{h} v_{h}
$$

so the conductivity is

$$
\sigma=n_{e} e \mu_{e}+n_{h} e \mu_{h}
$$

Or

$$
\sigma=n_{e} \frac{e^{2} \tau}{m_{e}^{*}}+n_{h} \frac{e^{2} \tau}{m_{h}^{*}}
$$

Note that we have assumed equal relaxation times, τ, for electrons and holes - this is not necessarily true.

- Lecture 22

\square An erroneous power of \hbar crept in in several places. The correct equations are

$$
\begin{gathered}
N_{\mathrm{c}}(T)=\frac{1}{4} V\left(\frac{2 m_{\mathrm{e}}^{*} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}, \\
n_{\mathrm{V}}(T)=\frac{1}{4}\left(\frac{2 m_{\mathrm{h}}^{*} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}, \\
n_{\mathrm{i}}(T)=e^{-E_{\mathrm{g}} /\left(2 k_{\mathrm{B}} T\right)} \frac{1}{4}\left(\frac{2 k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}\left(m_{\mathrm{e}}^{*} m_{\mathrm{h}}^{*}\right)^{3 / 4}
\end{gathered}
$$

and

$$
\begin{aligned}
& e^{-E_{g} /\left(2 k_{\mathrm{B}} T\right)} \frac{1}{4}\left(\frac{2 k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}\left(m_{\mathrm{e}}^{*} m_{\mathrm{h}}^{*}\right)^{3 / 4} \\
= & \frac{1}{4}\left(\frac{2 m_{\mathrm{e}}^{*} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2} e^{\left(\mu-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} .
\end{aligned}
$$

\square Furthermore, the number 5×10^{25} which appears twice, in $n_{\mathrm{c}}(T)$ and in $n_{\mathrm{i}}(T)$, should be 5×10^{21}.

