

CRYSTAL STRUCTURES Lecture 1

A.H. Harker *Physics and Astronomy*

UCL

Crystal Structures

FIGURE 1: Crystals of native copper.

FIGURE 2: Crystals of pyrite (FeS₂).

FIGURE 3: Crystals of quartz (SiO₂) - the original $\kappa\rho\nu\sigma\tau\alpha\lambda\lambda\sigma\varsigma$.

FIGURE 4: Snow crystals.

FIGURE 5: Crystals of stibnite (Sb₂S₃).

- **1.1 What is special about crystals?**
 - precise symmetries
 - flat surfaces
 - straight edges
 - Haüy's "Tout est trouvé!" on dropping iceland spar
- **1.2 What does this suggest about their structure?**

Regular pattern of simple building blocks (Kepler, Robert Hooke, Huygens, Descartes).

A crystal made from spherical particles, according to Robert Hooke (*Micrographia Restaurata*, London 1745).

Christiaan Huygens's picture of a calcite (CaCO₃) **crystal made from spherical particles** (*Traité de la Lumière*, Leiden 1690).

A crystal structure as depicted by René Haüy (*Traité de Cristallogra-phie*, Paris 1822).

1.3 Artistic Example

The key points about building this pattern are that

motifs are assembled *periodically* the motifs are all in the same orientation note that the motif contains *two* knights

Figure shows engravings by M.C. Escher

The plane is completely filled.

We can pick a unit cell: but note

- the unit cell is not unique. For example, we could pick a cell with a white knight in the middle
- or we could pick a larger cell which could be a bigger square or a rectangle or other shape

1.4 Formal description

Separate the motif from the repetition pattern.

1.4.1 The Lattice

A *lattice* is an arrangement of points in space such that the environment of any point is identical to that of any other point. Note: points, space – this is now a *mathematical problem*. The mathematicians tell us how many different lattice types there are in spaces of 2, 3,... dimensions. These are the *Bravais lattices*. Lattices have symmetries, more fully *point group symmetries*, described in terms of rotations and reflections.

Remember: the lattice is *not* the crystal – it's the collection of points in space on which the crystal is hung (but people often use the word lattice when they mean crystal).

1.4.2 Lattice vectors

A *lattice vector* is any vector joining two lattice points. It is convenient to define a set of *primitive lattice vectors*: this is the set of the shortest linearly independent lattice vectors. Linear independence ensures that they can span all dimensions of the space - for example, in 2D they must not be parallel, and in 3D in addition they must not lie in the same plane. These vectors, conventionally referred to as a, b and c, allow us to start from any point on the lattice and generate the rest of the lattice points at $n_1a + n_2b + n_3c$ where n_1 , n_2 and n_3 are integers, running in principle from $-\infty$ to $+\infty$.

1.4.3 The Unit Cell

A *unit cell* is a volume (area in 2D) which, when repeated by being translated by the lattice vectors, will fill all space. N.B. *translated*, without rotation or change of shape.

The triangular lattice - the dots represent points, not atoms.

The triangle is not a suitable unit cell,

because we cannot fill space just by replicating it – we have to invert it.

The rhombus is a suitable unit cell, the triangle is not.

1.4.4 Number of lattice points in cell

Two approaches:

Count points, sharing face, edge and corner points Shift the cell so that all points are internal, then count **Rectangular lattice (points have been given size to allow us to subdivide them)**

Here, each point is shared with *four* neighbouring cells, so the cell contains $4 \times \frac{1}{4} = 1$ point.

Alternatively, we can take advantage of the fact that the unit cell is not uniquely defined, so we can shift it.

This is a *primitive* unit cell.

1.4.5 Wigner-Seitz cell

Construction

- select a lattice point
- draw lines joining it to its neighbours
- draw perpendicular bisectors (planes in 3D, lines in 2D) of those lines
- the Wigner-Seitz cell is the volume (area in 2D) is the area within the bisectors.

The Wigner-Seitz cell tends to show the symmetry of the lattice.

1.4.6 Five Lattices in Two Dimensions

Square Square Hexagonal Hexagonal Centred rectangular				
Lattice	Unit Cell	Restric	tions	Symmetry
Oblique	Parallelogram	$a \neq b$,	$\phi \neq 90^{\circ}$	2
Square	Square	a = b,	$\phi = 90^{\circ}$	4mm
Hexagonal	60° Rhombus	a = b,	$\phi = 120^{\circ}$	6mm
Primitive Rectangular	Rectangle	$a \neq b$,	$\phi = 90^{\circ}$	2mm
Centred Rectangular	Rectangle	$a \neq b$,	$\phi = 90^{\circ}$	2 mm

Summary

Definitions Analysis of structure Beginning on real structures