

CRYSTAL STRUCTURES Lecture 2

A.H. Harker

Physics and Astronomy

UCL

Lattice and Basis

1.4.8 Fourteen Lattices in Three Dimensions

TriclinicP $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma$ MonoclinicP,C $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$ OrthorhmobicP,C,I,F $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ TetragonalP,I $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ CubicP,I,F ¹ $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$ TrigonalP $a = b = c$, $\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ HeyagonalP $a = b \neq c$ $\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$	System	Туре	Restrictions	
MonoclinicP,C $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$ OrthorhmobicP,C,I,F $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ TetragonalP,I $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ CubicP,I,F ¹ $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$ TrigonalP $a = b = c$, $\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ HeyagonalP $a = b \neq c$, $\alpha = \beta = 90^{\circ}$	Triclinic	Ρ	$a \neq b \neq c$,	$\alpha \neq \beta \neq \gamma$
OrthorhmobicP,C,I,F $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ TetragonalP,I $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ CubicP,I,F ¹ $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$ TrigonalP $a = b = c$, $\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ HeyagonalP $a = b \neq c$, $\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$	Monoclinic	P,C	$a \neq b \neq c$,	$\alpha = \gamma = 90^{\circ} \neq \beta$
TetragonalP,I $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ CubicP,I,F ¹ $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$ TrigonalP $a = b = c$, $\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ HeyagonalP $a = b \neq c$, $\alpha = \beta = 90^{\circ}$	Orthorhmobic	P,C,I,F	$a \neq b \neq c$,	$\alpha = \beta = \gamma = 90^{\circ}$
Cubic $\mathbf{P}, \mathbf{I}, \mathbf{F}^1$ $a = b = c, \alpha = \beta = \gamma = 90^\circ$ Trigonal \mathbf{P} $a = b = c, \alpha = \beta = \gamma < 120^\circ, \neq 90^\circ$ Hexagonal \mathbf{P} $a = b \neq c, \alpha = \beta = 90^\circ, \gamma = 120^\circ$	Tetragonal	P,I	$a = b \neq c,$	$\alpha = \beta = \gamma = 90^{\circ}$
Trigonal P $a = b = c, \alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$ Heyagonal P $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	Cubic	P,I,F ¹	a = b = c,	$\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal P $a - b \neq c$ $\alpha - \beta - 90^{\circ} \sim -120^{\circ}$	Trigonal	Ρ	a = b = c,	$\alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ}$
$u = 0 \neq c, \alpha = p = 30, \gamma = 120$	Hexagonal	Ρ	$a = b \neq c$,	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$

No need to learn details except for cubic, basic ideas of hexagonal.

1.4.9 Cubic Unit Cells

Primitive Unit Cells of cubic system Simple cubic: cube containing one lattice point (or 8 corner points each shared among 8 cubes: $8 \times \frac{1}{8} = 1$).

Body centred cubic: 2 points in cubic cell

Rhombohedral primitive cell of body centred cubic system. Face centred cubic: 4 points in cubic cell (8 corner points shared 8 ways, 6 face points shared 2 ways: $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$.

Rhombohedral primitive cell of face centred cubic system. We will work with non-primitive, conventional cubic cells.

1.4.10 Length Scale

Typical interatomic distance: a few Ångstroms, say 0.25 nm.

1.4.11 Cell Volume

If the primitive lattice vectors are \underline{a} , \underline{b} and \underline{c} , the cell volume is $|\underline{a}.\underline{b}\times\underline{c}|$. The lengths of the lattice vectors, $a = |\underline{a}|$ etc., are called the *lattice* parameters. For cubic crystals, a = b = c, so cell volume is a^3 .

1.4.12 The basis

So far we have been in the realm of abstract mathematics – now we need to attach the motif, the pattern itself, the atoms, to the lattice. The *basis* is the arrangement of atoms associated with each lattice point. Sometimes there is only one atom per lattice point – a *monatomic* lattice – but often there are more. Mathematically, this association of one copy of something with every point is a *convolution*.

1.4.13 Monatomic crystals

Some elements crystallize in forms with only one atom per unti cell:

- copper face-centred cubic
- iron (at low temperatures) body-centred cubic
- polonium simple cubic

1.5 Planar Hexagonal

Each lattice point is hexagonally coordinated (six neighbours at equal distances)

No atom forms bonds in quite that way.

Add another atom in each cell (at $\frac{1}{3}(\underline{a} + \underline{b})$).

as in one of the planes of graphite.

1.6 Cubic crystals

1.6.1 Sodium Chloride

NaCl is a face-centred cubic structure. That is:

- look at the structure
- identify the repeat unit
- focus on one atom in the repeat unit
- the lattice is revealed by the pattern of that atom

1.6.2 Caesium Chloride

CsCl is a simple cubic structure.

- **1.7** Planes, Lines etc
- **1.7.1** Miller Indices

To index a plane

- find where the plane cuts the axes (at A, B, C)
- express the intercepts as u a, v b, w c
- reduce the *reciprocals* to the simplest set of integers h, k, l
- \bullet the plane is then the (hkl) plane.
- \bullet conventionally, choose h,k and l with common factors removed
- note if intercept is at infinity, corresponding index is 0.
- note convention: round brackets
- note convention: negative values are quoted with a bar over.

Families of planes:

the indices (hkl) may refer to a single plane, or to a set of parallel planes. The (100) planes are a set of planes perpendicular to the x-axis, a distance a apart. The (200) planes are a set of planes perpendicular to the x-axis, a distance a/2 apart.

1.7.2 Directions

Square bracket notation [hkl]. For cubic systems only, [hkl] direction is perpendicular to (hkl) plane.

1.7.3 Symmetry-related sets

Of directions: $\langle hkl \rangle$ **Of planes:** $\{hkl\}$.

1.7.4 Spacing between planes

In a cubic system with lattice parameter (unit cell side) a, the (hkl) planes are separated by

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Think about the geometry, and thus the proof of this, before the next lecture.