

CRYSTAL STRUCTURES Lecture 4

A.H. Harker Physics and Astronomy UCL The extra path travelled by the left-hand ray on the way out (AB) must equal the extra path travelled by the right-hand ray on the way in (CD), so $\theta = \phi$, a 'reflection' (corresponds to zeroth order from diffraction grating).

Version: September 2003; Typeset on October 30, 2003,15:2

3

Structure & Diffraction

- 2 Crystal Diffraction
- 2.1 Bragg's Law

Any plane of regularly spaced atoms will act as a 'mirror':

Any plane will do. The reflectivity will depend on the number of atoms per area in the plane.

Now consider interference between reflections from successive planes:

Constructive interference if the extra path $ABC = n\lambda$, or

 $2d\sin\theta = n\lambda,$

Bragg's law.

2

Take care over angles:

- The angle is between the ray and the plane not the same convention as in optics
- If the Bragg angle is θ , the beam is deflected through 2θ .

rsion: September 2003; Typeset on October 30, 2003,15:28

Notation:

- \bullet We refer to (hkl) reflections, according to the plane which is reflecting.
- The n in $2d\sin\theta=n\lambda$ is called the order of the reflection or of the diffraction.
- \bullet The terms $n {\rm th}~{\rm order}~(hkl)$ reflection and (nh~~nk~~nl) reflection are equivalent.

2.2 Wavelengths and Energies

From Bragg's law $2d \sin \theta = n\lambda$ we must have $\lambda \le 2d$, that is $\lambda \approx 1$ Å or 0.1 nm. We can use x-rays, neutrons (or electrons – but mainly for surfaces).

Beam	Scattered from	Energy for $\lambda = 1$ Å	
x-ray	electrons	12 keV	$\lambda = \frac{12399}{E}$
neutron	nuclei	0.08 eV	$\lambda = \frac{0.2862}{\sqrt{E}}$
electron	electrons	150 eV	$\lambda = \frac{12.264}{\sqrt{E}}$

Version: September 2003; Typeset on October 30, 2003,15:28

2.2.1 X-ray sources

Kilovolt electrons impinge on target.

Continuum background plus sharp lines from intra-atomic transitions.

2.2.3 Neutron sources

Reactor:

- \bullet thermal neutrons (energy about $k_BT)$ need moderator to slow neutrons
- Boltzmann velocity distribution
- collimate beam

Use broad range of wavelengths, or put through monochromator

- mechanical chopper time taken to traverse known distance gives velocity
- Bragg's law 'in reverse' use crystal of known plane spacing, so know wavelength if know θ

Version: September 2003; Typeset on October 30, 2003,15:28

2.2.2 Electron sources

Hot cathode – electrons accelerated by electric field, focussed with magnetic field. Low penetration – study thin films or surfaces.

Version: September 2003; Typeset on October 30, 2003,15:28

Spallation source
accelerate protons and fire at heavy nuclei
neutrons thrown off
Intense, usually pulsed, source.

2.3 Elastic Scattering

Energy of waves is conserved – exit wavelength equal to incident wavelength.

 $\lambda_i = \lambda_f,$

$$|\mathbf{k}_i| = |\mathbf{k}_f|.$$

$$\Delta k| = 2|\mathbf{k}_i|\sin\theta = 2\frac{2\pi}{\lambda}\sin\theta = n\frac{2\pi}{d},$$

1.0

from Bragg's law.

SO

Version: September 2003; Typeset on October 30, 2003,15:2

Special relationship between Δk and the planes:

- Δk is perpendicular to the scattering planes,
- length of Δk is integer multiple of 2π divided by the plane spacing.

2.3.1 Example

X-ray scattering fron	n NaClO3. Cu Ka	$_{\lambda}$ radiation, $\lambda = 1.54$ Å
-----------------------	-----------------	--

				00	/
ť	$\theta^{\circ} \sin \theta$	$\sin^2 \theta$	\overline{N}	$(h\overline{kl})$	a
9.544	0.1658	0.0275	2	(110)	6.568
11.72	20 0.2031	0.0413	3	(111)	6.567
13.56	61 0.2345	0.0550	4	(200)	6.567
15.20	01 0.2622	0.0688	5	(210)	6.567
16.7(01 0.2874	0.0826	6	(211)	6.563
19.37	74 0.3317	0.1100	8	(220)	6.566
20.59	07 0.3518	0.1238	9	(221)(300)	6.566
21.77	71 0.3709	0.1376	10	(310)	6.565

Version: September 2003; Typeset on October 30, 2003,15:28

- tabulate $\sin \theta$ (remember to check whether θ or 2θ is given)
- tabulate $\sin^2 \theta$
- take out common factor (remember the (100) reflection is not always there)
- from integers $N = h^2 + k^2 + l^2$ identify reflections (remember N cannot equal 7)
- then use $a = \sqrt{N}\lambda/(2\sin\theta)$.