Crystal Structure

CRYSTAL STRUCTURES Lecture 4

A.H. Harker

Physics and Astronomy
UCL

Structure \& Diffraction

2 Crystal Diffraction

2.1 Bragg's Law

Any plane of regularly spaced atoms will act as a 'mirror':

Any plane will do. The reflectivity will depend on the number of atoms per area in the plane.

The extra path travelled by the left-hand ray on the way out $(A B)$ must equal the extra path travelled by the right-hand ray on the way in ($C D$), so $\theta=\phi$, a 'reflection' (corresponds to zeroth order from diffraction grating).

Now consider interference between reflections from successive planes:

Constructive interference if the extra path $A B C=n \lambda$, or

$$
2 d \sin \theta=n \lambda,
$$

Bragg's law.

Take care over angles:

- The angle is between the ray and the plane - not the same convention as in optics
- If the Bragg angle is θ, the beam is deflected through 2θ.

Notation:

- We refer to $(h k l)$ reflections, according to the plane which is reflecting.
- The n in $2 d \sin \theta=n \lambda$ is called the order of the reflection or of the diffraction.
- The terms nth order $(h k l)$ reflection and $(n h n k n l)$ reflection are equivalent.

2.2 Wavelengths and Energies

From Bragg's law $2 d \sin \theta=n \lambda$ we must have $\lambda \leq 2 d$, that is $\lambda \approx 1 \AA$ or 0.1 nm . We can use x-rays, neutrons (or electrons - but mainly for surfaces).

$$
\begin{aligned}
& \text { Beam Scattered Energy General } \\
& \text { from } \quad \text { for } \lambda=1 \AA \text { (} \lambda \text { in Åand } E \text { in eV }
\end{aligned}
$$

2.2.1 X-ray sources

Kilovolt electrons impinge on target.

Continuum background plus sharp lines from intra-atomic transitions.

2.2.2 Electron sources

Schematic diagram of an electron diffraction apparatus.

Hot cathode - electrons accelerated by electric field, focussed with magnetic field. Low penetration - study thin films or surfaces.

2.2.3 Neutron sources

Reactor:

- thermal neutrons (energy about $k_{B} T$) - need moderator to slow neutrons
- Boltzmann velocity distribution
- collimate beam

Use broad range of wavelengths, or put through monochromator

- mechanical chopper - time taken to traverse known distance gives velocity
- Bragg's law 'in reverse' - use crystal of known plane spacing, so know wavelength if know θ

Spallation source

- accelerate protons and fire at heavy nuclei
- neutrons thrown off

Intense, usually pulsed, source.

2.3 Elastic Scattering

Energy of waves is conserved - exit wavelength equal to incident wavelength.

$$
\lambda_{i}=\lambda_{f},
$$

so

$$
\begin{gathered}
\left|\mathbf{k}_{i}\right|=\left|\mathbf{k}_{f}\right| \\
|\Delta k|=2\left|\mathbf{k}_{i}\right| \sin \theta=2 \frac{2 \pi}{\lambda} \sin \theta=n \frac{2 \pi}{d}
\end{gathered}
$$

from Bragg's law.

Special relationship between Δk and the planes:

- Δk is perpendicular to the scattering planes,
- length of Δk is integer multiple of 2π divided by the plane spacing.

2.3.1 Example

X-ray scattering from $\mathrm{NaClO}_{3} . \mathbf{C u ~} \mathrm{K}_{\alpha}$ radiation, $\lambda=1.54{ }^{\circ}$.				
$\theta^{\circ} \sin \theta$	$\sin ^{2} \theta$	N	(hkl)	a
9.5440 .1658	0.0275	2	(110)	6.568
11.7200 .2031	0.0413	3	(111)	6.567
13.5610 .2345	0.0550	4	(200)	6.567
15.2010 .2622	0.0688	5	(210)	6.567
16.7010 .2874	0.0826	6	(211)	6.563
19.3740 .3317	0.1100	8	(220)	6.566
20.5970 .3518	0.1238	9	(221)(300)	6.566
21.7710 .3709	0.1376	10	(310)	6.565

- tabulate $\sin \theta$ (remember to check whether θ or 2θ is given)
- tabulate $\sin ^{2} \theta$
- take out common factor (remember the (100) reflection is not always there)
- from integers $N=h^{2}+k^{2}+l^{2}$ identify reflections (remember N cannot equal 7)
- then use $a=\sqrt{N} \lambda /(2 \sin \theta)$.

