

CRYSTAL STRUCTURES Lecture 4

A.H. Harker *Physics and Astronomy*

UCL

Structure & Diffraction

- 2 Crystal Diffraction
- 2.1 Bragg's Law

Any plane of regularly spaced atoms will act as a 'mirror':

Any plane will do. The reflectivity will depend on the number of atoms per area in the plane.

The extra path travelled by the left-hand ray on the way out (AB) must equal the extra path travelled by the right-hand ray on the way in (CD), so $\theta = \phi$, a 'reflection' (corresponds to zeroth order from diffraction grating).

Now consider interference between reflections from successive planes:

Constructive interference if the extra path $ABC = n\lambda$, or

 $2d\sin\theta = n\lambda,$

Bragg's law.

Take care over angles:

- The angle is between the ray and the plane not the same convention as in optics
- If the Bragg angle is θ , the beam is deflected through 2θ .

Notation:

- \bullet We refer to (hkl) reflections, according to the plane which is reflecting.
- The $n \text{ in } 2d \sin \theta = n\lambda$ is called the *order* of the reflection or of the diffraction.
- The terms nth order (hkl) reflection and $(nh \ nk \ nl)$ reflection are equivalent.

2.2 Wavelengths and Energies

From Bragg's law $2d \sin \theta = n\lambda$ we must have $\lambda \le 2d$, that is $\lambda \approx 1$ Å or 0.1 nm. We can use x-rays, neutrons (or electrons – but mainly for surfaces).

Beam		Energy for $\lambda = 1$ Å	General $(\lambda$ in Åand E in eV
x-ray	electrons	12 keV	$\lambda = \frac{12399}{E}$
neutron	nuclei	0.08 eV	$\lambda = \frac{0.2862}{\sqrt{E}}$
electron	electrons	150 eV	$\lambda = \frac{12.264}{\sqrt{E}}$

2.2.1 X-ray sources

Kilovolt electrons impinge on target.

Continuum background plus sharp lines from intra-atomic transitions.

2.2.2 Electron sources

Schematic diagram of an electron diffraction apparatus.

Hot cathode – electrons accelerated by electric field, focussed with magnetic field. Low penetration – study thin films or surfaces.

2.2.3 Neutron sources

Reactor:

- \bullet thermal neutrons (energy about k_BT) need moderator to slow neutrons
- Boltzmann velocity distribution
- collimate beam

Use broad range of wavelengths, or put through monochromator

- mechanical chopper time taken to traverse known distance gives velocity
- \bullet Bragg's law 'in reverse' use crystal of known plane spacing, so know wavelength if know θ

Spallation source

- accelerate protons and fire at heavy nuclei
- neutrons thrown off
- Intense, usually pulsed, source.

2.3 Elastic Scattering

Energy of waves is conserved – exit wavelength equal to incident wavelength.

$$\lambda_i = \lambda_f,$$

SO

$$|\mathbf{k}_i| = |\mathbf{k}_f|.$$
$$|\Delta k| = 2|\mathbf{k}_i|\sin\theta = 2\frac{2\pi}{\lambda}\sin\theta = n\frac{2\pi}{d},$$

from Bragg's law.

Special relationship between Δk and the planes:

- Δk is perpendicular to the scattering planes,
- \bullet length of Δk is integer multiple of 2π divided by the plane spacing.

2.3.1 Example

X-ray scattering from NaClO₃. Cu K_{α} radiation, $\lambda = 1.54$ Å.

θ°	$\sin\theta$	$\sin^2 heta$	\overline{N}	(hkl)	a
9.544	0.1658	0.0275	2	(110)	6.568
11.720	0.2031	0.0413	3	(111)	6.567
13.561	0.2345	0.0550	4	(200)	6.567
15.201	0.2622	0.0688	5	(210)	6.567
16.701	0.2874	0.0826	6	(211)	6.563
19.374	0.3317	0.1100	8	(220)	6.566
20.597	0.3518	0.1238	9	(221)(300)	6.566
21.771	0.3709	0.1376	10	(310)	6.565

- tabulate sin θ (remember to check whether θ or 2θ is given)
 tabulate sin² θ
- take out common factor (remember the (100) reflection is not always there)
- from integers $N = h^2 + k^2 + l^2$ identify reflections (remember N cannot equal 7)
- then use $a = \sqrt{N\lambda}/(2\sin\theta)$.