

CRYSTAL STRUCTURES Lecture 6

A.H. Harker *Physics and Astronomy*

lysics and Astrono

UCL

Structure & Diffraction

Crystal Diffraction (concluded)

Structures with a Basis

- 2.7.2 Detailed Treatment
- Unit cell *I* has atoms of type *j* at positions

$$\mathbf{r}_{Ii} = \mathbf{r}_I + \mathbf{r}_j,$$

each with scattering amplitude f_j so total amplitude of the scattered wave is

Total Amplitude
$$\propto \sum_{I} \sum_{j} f_{j} \exp[-i\Delta \mathbf{k}.(\mathbf{r}_{I} + \mathbf{r}_{j})]$$
 (1)
= $\left\{ \sum_{I} \exp[-i\Delta \mathbf{k}.\mathbf{r}_{I}] \right\} \left\{ \sum_{j} f_{j} \exp[-i\Delta \mathbf{k}.\mathbf{r}_{j}] \right\}$ (2)

That is, we have the usual Bragg condition, but it is *multiplied* by the *structure factor*

$$S(\Delta \mathbf{k}) = \sum_{j} f_{j} \exp[-i\Delta \mathbf{k} \cdot \mathbf{r}_{j}].$$

We know that $\Delta \mathbf{k}$ is a reciprocal lattice vector, so if atom j is at $x_j \mathbf{a} + y_j \mathbf{b} + z_j \mathbf{c}$

$$S(\Delta \mathbf{k}) = S(hkl) = \sum_{j} f_{j} \exp[-2\pi i(hx_{j} + ky_{j} + lz_{j})].$$

Example – bcc structure Identical atoms at (0, 0, 0) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$,

$$S(hkl) = f \left[e^{2\pi i (0+0+0)} + e^{2\pi i (\frac{h}{2} + \frac{k}{2} + \frac{l}{2})} \right]$$
(3)
= $f \left[1 + e^{\pi i (h+k+l)} \right].$ (4)

Clearly, S(hkl) = 0 if h + k + l is odd – missing orders again.

2.8 Other Information

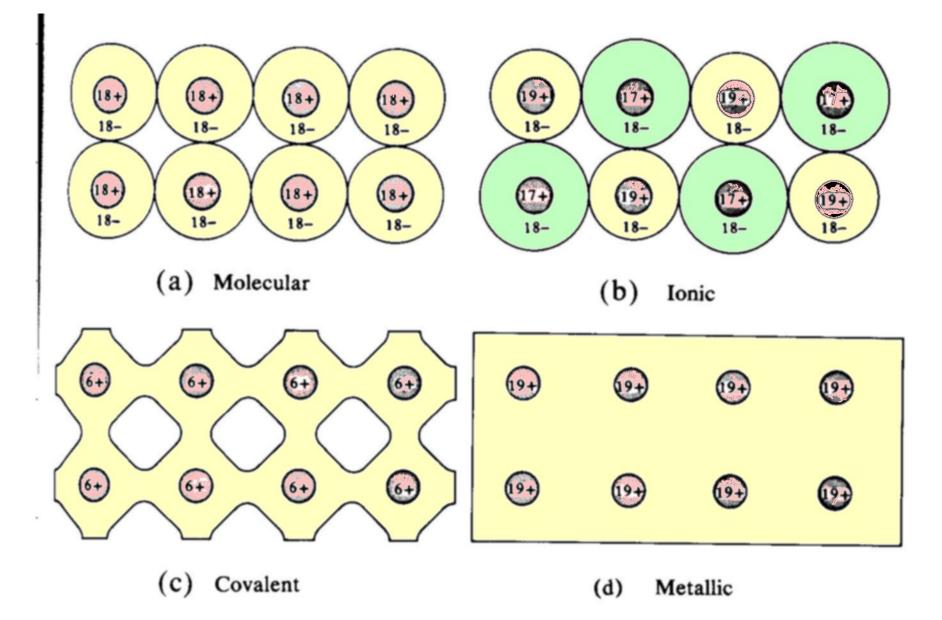
Strictly, S(hkl) involves an *integral* of the scattering over the unit cell:

- x-rays can give electron density maps which tell us about binding
- neutrons interact with nuclei
- neutrons have spin and magnetic moment, so can give information about magnetic structure.

Binding of Solids

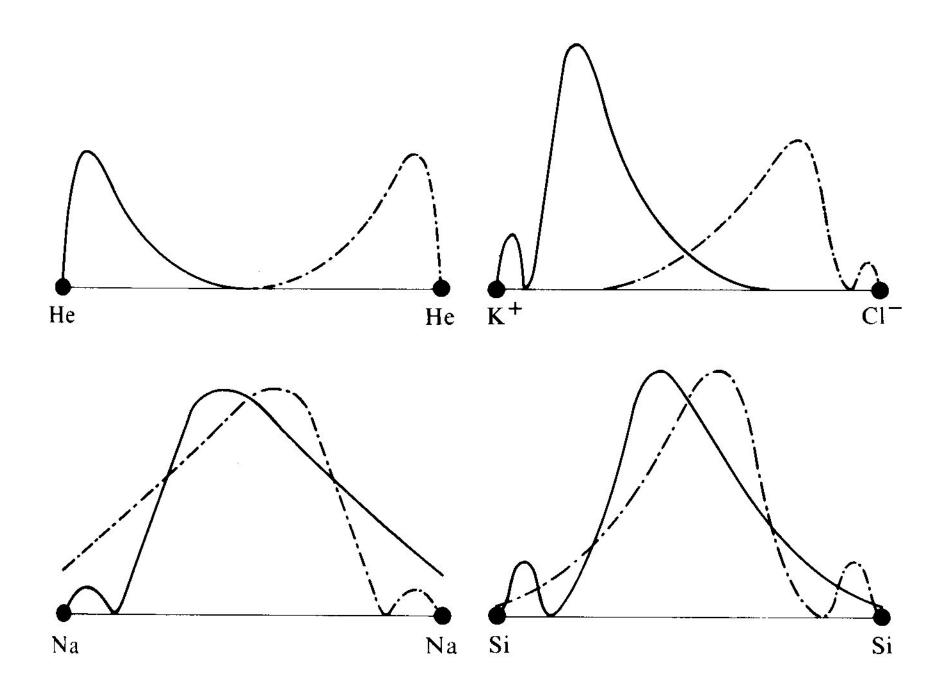
Bonding in Crystals

3.1 Types of Bond

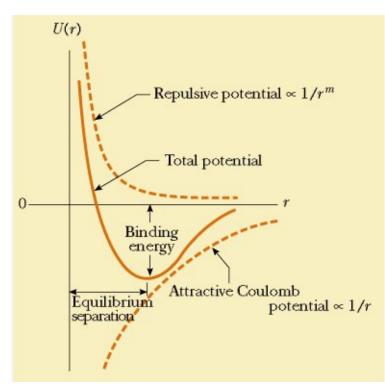


- Molecular or van der Waals closed shell atoms or molecules
- Ionic closed shell ions
- Covalent directed bonds between atoms
- Metallic delocalised electrons with ion cores embedded

Real materials involve bonds of mixed character.

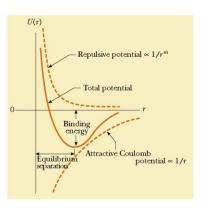


3.2 Interatomic Potential Curves



- Often thought of as sum of long-range attraction and short-range repulsion.
- Really a complex quantum-mechanical problem.
- The *shape* of the curve is similar, whatever the bonding.

3.3 Interatomic Potential Curves



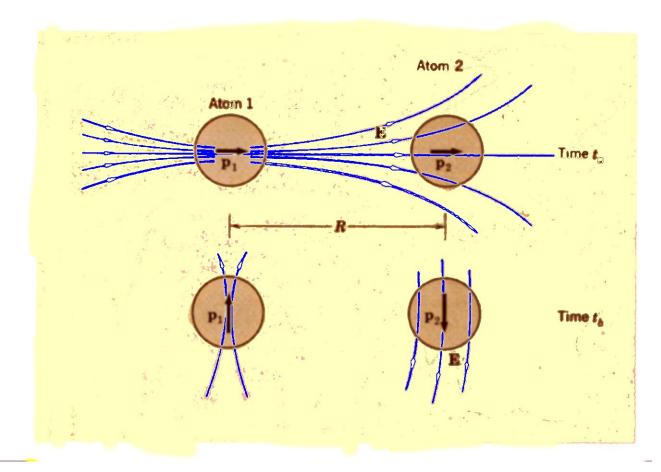
Assume for the moment only nearest-neighbour interactions.

- Well depth gives binding energy.
- Position of minimum gives interatomic spacing.
- Curvature at minimum determines bulk modulus.

$$p = -\frac{\partial E}{\partial V}$$
$$B = -V\frac{\partial p}{\partial V} = V\frac{\partial^2 E}{\partial V^2}$$

- Departure from symmetric shape determines thermal expansion.
- Few experiments (high-pressure shocks; high temperatures) explore potential curve far from minimum.

3.4 van der Waals Interaction



Classical picture: interaction between instantaneous dipoles.

- atom acquires dipole moment **p**
- \bullet this gives electric field $\mathcal{E} \propto \frac{p}{r^3}$ at r
- \bullet an atom at r with polarisability α acquires a dipole moment $p'=\alpha \mathcal{E}$ parallel to \mathcal{E}
- this give a field back at the original atom ${\cal E}'\propto {p'\over r^3}\propto {\alpha p\over r^6}$
- the energy of the original dipole in this field is $E = -\mathbf{p} \cdot \mathcal{E}' \propto \frac{1}{r^6}$
- van der Waals interaction

$$-\propto rac{1}{r^6}$$

- isotropic
- always attractive
- quite weak about 0.01 to 0.1 eV/atom pair

3.4.1 Short-range repulsion

Physical origin – Pauli exclusion principle.

- Inside the electrons which form chemical bonds there are closed shells (except for H hence special H bond)
- Try to overlap these cores, electrons from one atom try to occupy ground state orbitals of the other
- But these states are already occupied
- Electrons must move to higher-energy states
- Extent to which this happens depends on overlap of wavefunctions
- Energy Increases rapidly with decreasing separation
- Often taken as
 - high power of $r: E_{\rm rep} \propto \frac{1}{r^{12}}$ or
 - exponential: $E_{\rm rep} \propto e^{-r/a}$.
 - These are approximations to the true form

Another way of thinking about the repulsive terms:

- Wavefunctions for different states must be orthogonal (think back to atomic physics).
- For atoms that are far apart, this is true, as their wavefunctions do not overlap: $S_{12} = \int \phi_1 \phi_2 = 0$.
- When they overlap, we can make new functions that are orthogonal by defining $\psi_1 = \phi_1 S_{12}\phi_2$ and $\psi_2 = \phi_2$ (one can make this more symmetrical, but it's messier)
- Then $\int \psi_1 \psi_2 = \int (\phi_1 S_{12}\phi_2)\phi_2 = 0$
- But the price we pay is to introduce more structure into ψ_1 , and more structure means more curvature means more kinetic energy,
- So the overlap pushes up the energy.

3.5 van der Waals Solids

Examples:

- rare gas solids spherical atoms
- \bullet molecular crystals e.g. $\rm Cl_2,\, C_6H_6,$ polymers. More complex because of molecular shapes
- graphite covalently bonded planes of carbon, planes held together by van der Waals forces.

We consider only rare gas solids.

Write pair interaction as Lennard-Jones potential:

$$U(r) = \frac{A}{r^{12}} - \frac{B}{r^6},$$

or

$$U(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

Typically σ is a few Å, say 0.3 nm.