CRYSTAL BINDING
 Lecture 7

A.H. Harker
Physics and Astronomy UCL

Crystal Binding (cont)

3.5.1 Energy of van der Waals Solid

Convert from pair-wise interactions by summing over all pairs.

- pick an atom, label it 0 ,
- let energy of interaction of this atom with neighbour i at a distance r_{i} be $U\left(r_{i}\right)$
- total potential energy of the atom is

$$
U_{0}=\sum_{i} U\left(r_{i}\right)
$$

- if there are N atoms altogether, each will have this same energy but interaction $0-i$ is the same as $i-0$
- so total energy is

$$
U=\frac{N}{2} \sum_{i} U\left(r_{i}\right)
$$

Separate structure (spatial arrangement) from scale (interatomic separation).

- write $r_{i}=\rho_{i} r_{0}$, where r_{0} is nearest neighbour distance, ρ_{i} is dimensionless
- then

$$
U\left(r_{i}\right)=4 \epsilon\left[\frac{1}{\rho_{i}^{12}}\left(\frac{\sigma}{r_{0}}\right)^{12}-\frac{1}{\rho_{i}^{6}}\left(\frac{\sigma}{r_{0}}\right)^{6}\right] .
$$

- summing,

$$
U=2 N \epsilon\left[A_{12}\left(\frac{\sigma}{r_{0}}\right)^{12}-A_{6}\left(\frac{\sigma}{r_{0}}\right)^{6}\right]
$$

where

$$
A_{n}=\sum_{i} \frac{1}{\rho_{i}^{n}}
$$

- these lattice sums can be done for any structure.

Structure	A_{12}	A_{6}
FCC	$\mathbf{1 2 . 1 2 1 8 8}$	$\mathbf{1 4 . 4 5 3 9 2}$
HCP	$\mathbf{1 2 . 1 3 2 2 9}$	$\mathbf{1 4 . 4 5 4 8 9}$
BCC	$\mathbf{9 . 1 1 4 1 8}$	$\mathbf{1 2 . 2 5 3 3 0}$

Note:

- expect sum of $1 / r^{n}$ to converge rapidly for large n
- A_{12} is dominated by the nearest neighbours ($\mathbf{1 0}$ in FCC, HCP, $\mathbf{8}$ in BCC), but more distant neighbours affect A_{6}

3.5.2 Equilibrium Separation

The equilibrium structure minimises the total energy: $\partial U / \partial r_{0}=0$.

$$
\frac{\partial U}{\partial r_{0}}=-2 N \epsilon\left[12 A_{12} \frac{\sigma^{12}}{r_{0}^{13}}-6 A_{6} \frac{\sigma^{6}}{r_{0}^{7}}\right]
$$

which is zero when

$$
\frac{r_{0}}{\sigma}=\left(\frac{2 A_{12}}{A_{6}}\right)^{1 / 6}
$$

$\frac{r_{0}}{\sigma}=1.09$ for FCC.

$$
U=-\frac{A_{6}^{2}}{2 A_{12}} \epsilon \text { per atom. }
$$

Typically about 0.01 to 0.1 eV per atom.

3.5.3 Choice of Structure

Expect structure to form crystals which have lowest energy, i.e. largest cohesive energy.
Strictly, Gibbs free energy,

$$
G=U-T S+p V
$$

but assume $T=0$ and $p=0$. Neglect kinetic energy of atomic motion

$$
\begin{array}{lllll}
\hline & \text { SC } & \text { BCC } & \text { HCP } & \text { FCC } \\
\hline A_{6} & \mathbf{8 . 4} & \mathbf{1 2 . 2 5} & \mathbf{1 4 . 4 5} & \mathbf{1 4 . 4 5}
\end{array}
$$

in $U . A_{12} \quad \mathbf{6 . 2} \quad \mathbf{9 . 1 1} \quad \mathbf{1 2 . 1 3} \quad \mathbf{1 2 . 1 2}$

Note how close FCC and HCP are in energy - but FCC is favoured.

3.5.4 Bulk Modulus

We know energy as a function of separation: need to express as function of volume. For FCC structure, cubic lattice parameter a, nearest-neighbour separation $r_{0}=a / \sqrt{2}$. Cubic unit cell, volume a^{3}, contains 4 atoms, so

$$
\begin{aligned}
\text { Volume per atom } & =\frac{a^{3}}{4} \\
& =\frac{r_{0}^{3}}{\sqrt{2}}
\end{aligned}
$$

Now we could use

$$
\frac{\partial}{\partial V}=\frac{\partial r_{0}}{\partial V} \frac{\partial}{\partial r_{0}}
$$

but it's easier to substitute

$$
r_{0}=2^{1 / 6} V^{1 / 3} N^{-1 / 3}
$$

in

$$
U=2 N \epsilon\left[A_{12}\left(\frac{\sigma}{r_{0}}\right)^{12}-A_{6}\left(\frac{\sigma}{r_{0}}\right)^{6}\right]
$$

to get

$$
U=2 N \epsilon\left[A_{12} \frac{\sigma^{12} N^{4}}{4 V^{4}}-A_{6} \frac{\sigma^{6} N^{2}}{2 V^{2}}\right]
$$

and hence

$$
\frac{\partial^{2} U}{\partial V^{2}}=2 N \epsilon\left[A_{12} \frac{20 \sigma^{12} N^{4}}{4 V^{6}}-A_{6} \frac{6 \sigma^{6} N^{2}}{2 V^{4}}\right]
$$

so

$$
B=N \epsilon\left[A_{12} \frac{10 \sigma^{12} N^{4}}{V^{5}}-A_{6} \frac{6 \sigma^{6} N^{2}}{V^{3}}\right]
$$

But in equilibrium

$$
r_{0}=\sigma\left(\frac{2 A_{12}}{A_{6}}\right)^{1 / 6}
$$

so

$$
V=N \sigma^{3} \sqrt{\left(\frac{A_{12}}{A_{6}}\right)}
$$

and

$$
\begin{aligned}
B & =N \epsilon\left[10 A_{12} \sigma^{12} N^{4} \times \frac{1}{N^{5} \sigma^{15}}\left(\frac{A_{6}}{A_{12}}\right)^{5 / 2}\right. \\
& \left.-6 A_{6} \sigma^{6} N^{2} \times \frac{1}{N^{3} \sigma^{9}}\left(\frac{A_{6}}{A_{12}}\right)^{3 / 2}\right]
\end{aligned}
$$

which simplifies to

$$
B=\frac{4 A_{6}^{5 / 2} \epsilon}{A_{12}^{3 / 2} \sigma^{3}}
$$

3.6 Ionic Crystals

The picture of an assembly of spherical ions is a good one:

(Theoretical calculations by Harker, checked against experiment)

3.6.1 Ionic Radii and Packing

In general, cation M^{+}and anion X^{-}have different radii.
We expect lowest energy if we have as many cations as possible around each anion, and we avoid anions touching anions.
We know that for equal-sized spheres FCC gives high packing.

$\mathrm{CsCl}(110)$

If we shrink the smaller ions, but keep the geometrical arrangement, eventually the larger ions will touch.

$\mathrm{CsCl}(110)$

$\mathrm{NaCl}: X$ atoms touch if

$$
\begin{aligned}
r_{M X} & =r_{M}+r_{X} \\
r_{X X} & =\sqrt{2} r_{M X} \\
r_{X X} \leq 2 r_{X} & \rightarrow \sqrt{2}\left(r_{M}+r_{X}\right) \leq 2 r_{X} \\
\frac{r_{X}}{r_{M}} & \geq \frac{1}{\sqrt{2}-1}
\end{aligned}
$$

CsCl: X atoms touch if

$$
\begin{aligned}
r_{M X} & =r_{M}+r_{X} \\
r_{X X} & =\frac{2}{\sqrt{3}} r_{M X} \\
r_{X X} \leq 2 r_{X} & \rightarrow \frac{2}{\sqrt{3}}\left(r_{M}+r_{X}\right) \leq 2 r_{X} \\
\frac{r_{X}}{r_{M}} & \geq \frac{1}{\sqrt{3}-1}
\end{aligned}
$$

Given a table of ionic radii, we can guess structures of compounds.

3.6.2 Ionic Lattice Sums

For a pair of ions,

$$
U_{i j}=\frac{q_{i} q_{j} e^{2}}{4 \pi \epsilon_{0} r_{i j}}+U_{\mathrm{rep}}\left(r_{i j}\right)
$$

and summing as before gives

$$
U=\frac{N}{2}\left[-\alpha_{M} \frac{e^{2}}{4 \pi \epsilon_{0} r_{0}}+U_{\mathrm{rep}}\right]
$$

α_{M} is the Madelung constant, obtained by a lattice sum:

$$
-\alpha_{M}=\sum_{i} \frac{q_{0} q_{i}}{\rho_{i}}
$$

3.6.3 Linear Chain

$$
\alpha_{M}=2\left[\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\ldots\right]
$$

Note:

- very slowly convergent
- only converges because it is an alternating series - try to sum only effect of, say, positive ions and get infinity
- Result: $\alpha_{M}=2 \ln (2)$.

3.6.4 Three dimensions

Special mathematical tricks used to calculate Madelung constant.

- Evjen method: sum neutral regions, using increasingly large cubes and only counting half of charges on face centres, quarter of cube edges, eighth of cube corners
- Ewald method: trick involving real space and reciprocal space

Structure	coordination number	α_{M}
$\mathbf{C s C l}$	$\mathbf{8}$	$\mathbf{1 . 7 6 2 7}$
$\mathbf{N a C l}$	6	$\mathbf{1 . 7 4 7 6}$
Zinc blende (like GaAs)	$\mathbf{4}$	$\mathbf{1 . 6 3 8 1}$
Wurtzite (hexagonal ZnS)	$\mathbf{4}$	$\mathbf{1 . 6 4 1}$

Higher coordination gives larger Madelung constant.

3.6.5 Ionic Structures

Structure will be that which minimises energy.

Energy increasingly negative as ions get closer - until like ions touch. Radius ratios (smaller r_{s} over larger r_{l}) give good guidance. Similar radii favour close packed structures - very different radii give more open, lower-coordinated (and more covalent) structures.

Summary

- Binding Energy, Equilibrium Separation
- Lattice Sums
- Coulomb sums
- Minimum-energy structures
- Elasticity

Next:

- Lattice vibrations

