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Crystal Binding (cont)

3.5.1 Energy of van der Waals Solid

Convert from pair-wise interactions by summing over all pairs.
e pick an atom, label it O,

e let energy of interaction of this atom with neighbour: at a distance
r; be U(TZ)

e total potential energy of the atom is
Up=Y Ulr;)
i

o If there are NV atoms altogether, each will have this same energy —
but interaction 0 — ¢ is the same as — 0

e SO total energy is

U = gz U(r;).



Separate structure (spatial arrangement) from scale (interatomic sep-
aration).

e Write r; = p,;rg, Where rqy IS nearest neighbour distancep, Is di-
mensionless

e then ) " -
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e these lattice sums can be done for any structure.



Structure Ay Ag
FCC 12.12188 14.45392
HCP 12.13229 14.45489
BCC 9.11418 12.25330

Note:
e expect sum ofl /r" to converge rapidly for large n

e Ao Is dominated by the nearest neighbours (10 in FCC, HCP, 8 in
BCC), but more distant neighbours affectAg



3.5.2 Equilibrium Separation

The equilibrium structure minimises the total energy: oU /drq = 0.
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Typically about 0.01 to 0.1 eV per atom.



3.5.3 Choice of Structure

Expect structure to form crystals which have lowest energy, i.e. largest
cohesive energy.
Strictly, Gibbs free energy,

G=U-TS5+pV,

but assumel’ = 0 and p = 0. Neglect kinetic energy of atomic motion
SC BCC HCP FCC

Ag 8.4 12.25 14.45 14.45

inU. A 6.2 911 12.13 12.12

U
U 569 -8.24 -8.61 -8.62

Note how close FCC and HCP are in energy — but FCC is favoured.



3.5.4 Bulk Modulus

We know energy as a function of separation: need to express as
function of volume. For FCC structure, cubic lattice parameter a,
nearest-neighbour separation-y = a/+/2. Cubic unit cell, volume @,
contains 4 atoms, so

Volume per atom =
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but it's easier to substitute
Py = o1/61/1/3 n—1/3
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But in equilibrium
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3.6 lonic Crystals
The picture of an asse of spherical ions Is a good one:
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(Theoretical calculations by Harker, checked against experiment



3.6.1 lonic Radii and Packing

In general, cationM™ and anion X — have different radii.
We expect lowest energy if we have as many cations as possible aroun
each anion, and we avoid anions touching anions.

We know that for equal-sized spheres FCC gives high packing.
NaCl(001)

CsCl(110)

If we shrink the smaller ions, but keep the geometrical arrangement,
eventually the larger ions will touch.



NaCl(001)

CsCl(110)

NaCl: X atoms touch If

rMX = Ty tTXY

ryx = V2ryx
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NaCl(001)

CsCI(110)

CsCl: X atoms touch if

TMX = T§4—|-7“X
rxx = ETMX

2
TXXSQTX —> %(TM—I—TX)SQTX
ryY 1
M V3 -1

Given a table of ionic radii, we can guess structures of compounds.




3.6.2 lonic Lattice Sums

For a pair of ions,
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and summing as before gives
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a s 1S the Madelung constantobtained by a lattice sum:
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3.6.3 Linear Chain
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e Only converges because it is an alternating series — try to sum only
effect of, say, positive ions and get infinity
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Note:
e very slowly convergent

e Result: a; = 21n(2).

3.6.4 Three dimensions

Special mathematical tricks used to calculate Madelung constant.



e Evjen method: sum neutral regions, using increasingly large cubes
and only counting half of charges on face centres, quarter of cube
edges, eighth of cube corners

e Ewald method: trick involving real space and reciprocal space

Structure coordination «ay
number

CsCl 8 1.7627

NacCl 6 1.7476

Zinc blende (like GaAs) 4 1.6381

Wurtzite (hexagonal ZnS) 4 1.641

Higher coordination gives larger Madelung constant.



3.6.5 lonic Structures

Structure will be that which minimises energy.

A

CsCl

NaCl yd /
ZnS /

0 0.2 0.4 0.6 0.8 1.0
rs/r{g

Energy

Energy increasingly negative as ions get closer — until like ions touch.
Radius ratios (smallerrg over larger r;) give good guidance. Similar
radii favour close packed structures — very different radii give more
open, lower-coordinated (and more covalent) structures.



Summary

¢ Binding Energy, Equilibrium Separation
e Lattice Sums

e Coulomb sums

e Minimum-energy structures

e Elasticity

Next:
e Lattice vibrations
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