
Crystal Structure

CRYSTAL BINDING
Lecture 7

A.H. Harker
Physics and Astronomy

UCL



Crystal Binding (cont)
3.5.1 Energy of van der Waals Solid

Convert from pair-wise interactions by summing over all pairs.

• pick an atom, label it 0,

• let energy of interaction of this atom with neighbouri at a distance
ri beU(ri)

• total potential energy of the atom is

U0 =
∑

i

U(ri)

• if there are N atoms altogether, each will have this same energy –
but interaction 0− i is the same asi− 0

• so total energy is

U =
N

2

∑
i

U(ri).
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Separate structure (spatial arrangement) from scale (interatomic sep-
aration).

• write ri = ρir0, where r0 is nearest neighbour distance,ρi is di-
mensionless

• then

U(ri) = 4ε

[
1

ρ12
i

(
σ

r0

)12

− 1

ρ6
i

(
σ

r0

)6
]

.

• summing,

U = 2Nε

[
A12

(
σ

r0

)12

− A6

(
σ

r0

)6
]

,

where
An =

∑
i

1

ρn
i

.

• these lattice sums can be done for any structure.
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Structure A12 A6
FCC 12.12188 14.45392
HCP 12.13229 14.45489
BCC 9.11418 12.25330

Note:

• expect sum of1/rn to converge rapidly for large n

• A12 is dominated by the nearest neighbours (10 in FCC, HCP, 8 in
BCC), but more distant neighbours affectA6
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3.5.2 Equilibrium Separation

The equilibrium structure minimises the total energy: ∂U/∂r0 = 0.

∂U

∂r0
= −2Nε

[
12A12

σ12

r13
0

− 6A6
σ6

r7
0

]
,

which is zero when
r0

σ
=

(
2A12

A6

)1/6

r0
σ = 1.09 for FCC.

U = −
A2

6

2A12
ε per atom.

Typically about 0.01 to 0.1 eV per atom.
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3.5.3 Choice of Structure

Expect structure to form crystals which have lowest energy, i.e. largest
cohesive energy.
Strictly, Gibbs free energy,

G = U − TS + pV,

but assumeT = 0 and p = 0. Neglect kinetic energy of atomic motion

in U .

SC BCC HCP FCC
A6 8.4 12.25 14.45 14.45

A12 6.2 9.11 12.13 12.12

U
Nε -5.69 -8.24 -8.61 -8.62

Note how close FCC and HCP are in energy – but FCC is favoured.
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3.5.4 Bulk Modulus

We know energy as a function of separation: need to express as
function of volume. For FCC structure, cubic lattice parameter a,
nearest-neighbour separationr0 = a/

√
2. Cubic unit cell, volumea3,

contains 4 atoms, so

Volume per atom =
a3

4

=
r3
0√
2
.

Now we could use
∂

∂V
=

∂r0

∂V

∂

∂r0
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but it’s easier to substitute

r0 = 21/6V 1/3N−1/3

in

U = 2Nε

[
A12

(
σ

r0

)12

− A6

(
σ

r0

)6
]

,

to get

U = 2Nε

[
A12

σ12N4

4V 4
− A6

σ6N2

2V 2

]
and hence

∂2U

∂V 2
= 2Nε

[
A12

20σ12N4

4V 6
− A6

6σ6N2

2V 4

]
so

B = Nε

[
A12

10σ12N4

V 5
− A6

6σ6N2

V 3

]
.
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But in equilibrium

r0 = σ

(
2A12

A6

)1/6

,

so

V = Nσ3

√(
A12

A6

)
and

B = Nε

[
10A12σ

12N4 × 1

N5σ15

(
A6

A12

)5/2

− 6A6σ
6N2 × 1

N3σ9

(
A6

A12

)3/2
]

,

which simplifies to

B =
4A

5/2
6 ε

A
3/2
12 σ3

.
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3.6 Ionic Crystals

The picture of an assembly of spherical ions is a good one:

(Theoretical calculations by Harker, checked against experiment)
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3.6.1 Ionic Radii and Packing

In general, cationM+ and anionX− have different radii.
We expect lowest energy if we have as many cations as possible around
each anion, and we avoid anions touching anions.
We know that for equal-sized spheres FCC gives high packing.

If we shrink the smaller ions, but keep the geometrical arrangement,
eventually the larger ions will touch.
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NaCl: X atoms touch if

rMX = rM + rX

rXX =
√

2rMX

rXX ≤ 2rX →
√

2(rM + rX) ≤ 2rX
rX

rM
≥ 1√

2− 1
.
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CsCl: X atoms touch if

rMX = rM + rX

rXX =
2√
3
rMX

rXX ≤ 2rX → 2√
3
(rM + rX) ≤ 2rX

rX

rM
≥ 1√

3− 1
.

Given a table of ionic radii, we can guess structures of compounds.
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3.6.2 Ionic Lattice Sums

For a pair of ions,

Uij =
qiqje

2

4πε0rij
+ Urep(rij),

and summing as before gives

U =
N

2

[
−αM

e2

4πε0r0
+ Urep

]
.

αM is theMadelung constant, obtained by a lattice sum:

−αM =
∑

i

q0qi

ρi
.
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3.6.3 Linear Chain

αM = 2

[
1

1
− 1

2
+

1

3
− ....

]
Note:

• very slowly convergent

• only converges because it is an alternating series – try to sum only
effect of, say, positive ions and get infinity

• Result: αM = 2 ln(2).

3.6.4 Three dimensions

Special mathematical tricks used to calculate Madelung constant.
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• Evjen method: sum neutral regions, using increasingly large cubes
and only counting half of charges on face centres, quarter of cube
edges, eighth of cube corners

• Ewald method: trick involving real space and reciprocal space

Structure coordination αM
number

CsCl 8 1.7627
NaCl 6 1.7476
Zinc blende (like GaAs) 4 1.6381
Wurtzite (hexagonal ZnS) 4 1.641

Higher coordination gives larger Madelung constant.
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3.6.5 Ionic Structures

Structure will be that which minimises energy.

Energy increasingly negative as ions get closer – until like ions touch.
Radius ratios (smallerrs over larger rl) give good guidance. Similar
radii favour close packed structures – very different radii give more
open, lower-coordinated (and more covalent) structures.
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Summary

• Binding Energy, Equilibrium Separation

• Lattice Sums

• Coulomb sums

•Minimum-energy structures

• Elasticity

Next:

• Lattice vibrations
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