# **Crystal Structure**

# LATTICE VIBRATIONS Lecture 8

A.H. Harker Physics and Astronomy UCL

## **Lattice Vibrations**

## 4 Dynamics of Crystals

- Even in their ground states, the atoms have some kinetic energy (zero-point motion)
- Changes in temperature change the occupancy of the energy levels
   heat capacity
- Motion affects the entropy, and hence the free energy can affect the equilibrium structure
- Atomic motion affects the strength of diffraction patterns
- Vibrational energy can move through the structure
  - sound waves
  - heat transport
- Atoms away from regular sites alter the way electrons move through solids electrical resistance

#### 4.1 Chains of Atoms

We shall start by assuming that every atom's interactions with its neighbours may be represented by a spring, so that the force in each 'spring' is proportional to the change in length of the spring.

This is called the *harmonic approximation*. We'll talk about it more later. Also assume that only forces between nearest neighbours are significant

## 4.1.1 Longitudinal Waves on Linear Chain



Atom n should be at a position na, but is displaced by an amount  $u_n$ . The 'unstretched string' corresponds to an interatomic spacing a. So

the force on atom n is

$$F_n = \alpha(u_{n+1} - u_n) - \alpha(u_n - u_{n-1}),$$

where  $\alpha$  is the spring constant. Thus the equation of motion is

$$m\ddot{u}_n = \alpha(u_{n+1} + u_{n-1} - 2u_n),$$

for atoms of mass m. Now look for wave-like solutions,

$$u_n(t) = A \exp(ikna - i\omega t),$$

and substitute to find

$$-m\omega^2 = \alpha \left( e^{ika} + e^{-ika} - 2 \right)$$
$$\omega^2 = \frac{\alpha}{m} (2 - 2\cos(ka))$$
$$= \frac{4\alpha}{m} \sin^2(ka/2).$$

This gives us the dispersion relation

$$\omega = \omega_0 \left| \sin \left( \frac{ka}{2} \right) \right|,$$

with a maximum cut-off frequency

$$\omega_0 = \sqrt{\frac{4\alpha}{m}}.$$

## Dispersion relation in extended zone



Group velocity  $v_g = \frac{\omega_0 a}{2} \cos\left(\frac{ka}{2}\right)$  Limit of long wavelength,  $k \to 0$ ,

$$\omega \to \frac{\omega_0 ka}{2}$$
,

and so in this limit

$$v_p = v_g = \frac{\omega_0 a}{2}$$
.

This is the normal sound velocity. Knowing  $v_p \approx 10^3 \ \mathrm{m \ s^{-1}}$  and  $a \approx 10^{-10} \ \mathrm{m}$ , we find

$$\omega_0 \approx 10^{13} \,\mathrm{rad} \,\mathrm{s}^{-1}$$
,

so that maximum frequencies of lattice vibrations are THz ( $10^{12}\ \rm{Hz}$  ). In the infrared range.

### 4.1.2 The Brillouin Zone

The dispersion is periodic in k. The frequency at k is the same as at  $k+2\pi/a$ .

Dispersion relation in extended zone



We only sample the wave at the atomic positions, so we cannot tell the waves k and  $k+2\pi/a$  apart.

Conventionally, we only consider the wavevectors between  $-\pi/a$  and  $\pi/a$ . This region corresponds to a *unit cell in reciprocal space*. Symmetrical treatment of waves travelling to right or left. Just as the physics is determined by the contents of a unit cell in real space, it is also determined by the behaviour of a unit cell in reciprocal space.

## 4.1.3 More than one atom per cell



Assume atoms of mass m are at  $u_n$ , atoms of mass M at  $v_n$ . Let the atoms be d apart, with the unit cell side still a. If the force constant is

again  $\alpha$  we get coupled equations:

$$m\ddot{u}_n = \alpha(v_n + v_{n-1} - 2u_n)$$
  

$$M\ddot{v}_n = \alpha(u_n + u_{n+1} - 2v_n).$$

Again look for travelling waves,

$$u_n(t) = A \exp(ikna - i\omega t)$$
  $v_n(t) = B \exp(ik(na + d) - i\omega t).$ 

Substitute, and for simplicity take a = 2d,

$$m\omega^2 A = 2\alpha (A - B\cos(kd))$$
  

$$M\omega^2 B = 2\alpha (B - A\cos(kd)).$$

This is a pair of linear homogeneous equations in A and B, which only has a non-trivial solution if the determinant of the coefficients is zero, that is

$$\begin{vmatrix} 2\alpha - m\omega^2 & -2\alpha\cos(kd) \\ -2\alpha\cos(kd) & 2\alpha - M\omega^2 \end{vmatrix} = 0,$$

which has solutions

$$\omega^{2} = \alpha \left( \frac{1}{m} + \frac{1}{M} \right)$$

$$\pm \alpha \sqrt{\left( \frac{1}{m} + \frac{1}{M} \right)^{2} - \frac{4 \sin^{2}(kd)}{mM}}.$$



## **Summary**

- Lattice vibrations linear chain
- Periodic nature of dispersion curve
- Unit cell in k-space (Brillouin zone)
- Lattice vibrations in non-monatomic systems

### **Next:**

- Phonons
- Thermal energy