

LATTICE VIBRATIONS Lecture 8

A.H. Harker *Physics and Astronomy*

UCL

Lattice Vibrations

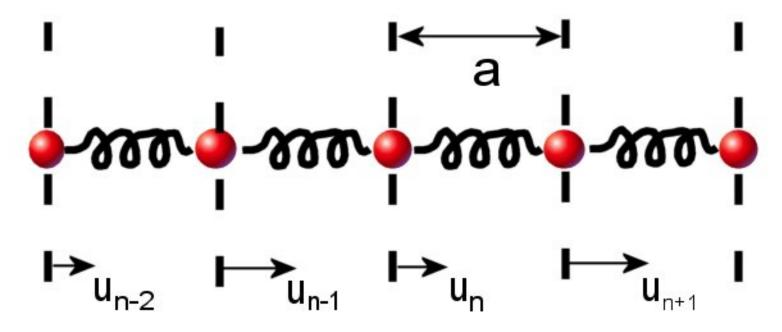
4 Dynamics of Crystals

- Even in their ground states, the atoms have some kinetic energy (zero-point motion)
- Changes in temperature change the occupancy of the energy levels – heat capacity
- Motion affects the entropy, and hence the free energy can affect the equilibrium structure
- Atomic motion affects the strength of diffraction patterns
- Vibrational energy can move through the structure
 - sound waves
 - heat transport
- Atoms away from regular sites alter the way electrons move through solids electrical resistance

4.1 Chains of Atoms

We shall start by assuming that every atom's interactions with its neighbours may be represented by a spring, so that the force in each 'spring' is proportional to the change in length of the spring. This is called the *harmonic approximation*. We'll talk about it more later. Also assume that only forces between nearest neighbours are significant

4.1.1 Longitudinal Waves on Linear Chain



Atom n should be at a position na, but is displaced by an amount u_n . The 'unstretched string' corresponds to an interatomic spacing a. So the force on atom \boldsymbol{n} is

$$F_n = \alpha (u_{n+1} - u_n) - \alpha (u_n - u_{n-1}),$$

where α is the spring constant. Thus the equation of motion is

$$m\ddot{u}_n = \alpha(u_{n+1} + u_{n-1} - 2u_n),$$

for atoms of mass *m*. Now look for wave-like solutions,

$$u_n(t) = A \exp(ikna - i\omega t),$$

and substitute to find

$$-m\omega^{2} = \alpha \left(e^{ika} + e^{-ika} - 2 \right)$$
$$\omega^{2} = \frac{\alpha}{m} (2 - 2\cos(ka))$$
$$= \frac{4\alpha}{m} \sin^{2}(ka/2).$$

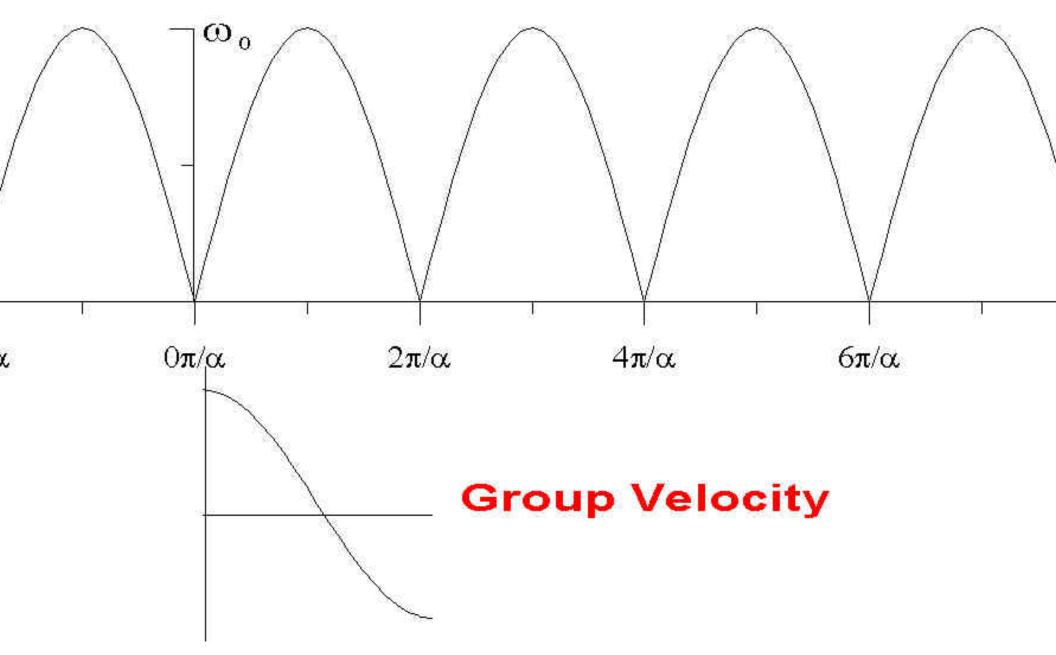
This gives us the *dispersion relation*

$$\omega = \omega_0 \left| \sin \left(\frac{ka}{2} \right) \right|,\,$$

with a maximum cut-off frequency

$$\omega_0 = \sqrt{\frac{4\alpha}{m}}.$$

Dispersion relation in extended zone



Group velocity $v_g = \frac{\omega_0 a}{2} \cos\left(\frac{ka}{2}\right)$ Limit of long wavelength, $k \to 0$, $\omega \to \frac{\omega_0 ka}{2}$,

and so in this limit

$$v_p = v_g = \frac{\omega_0 a}{2}.$$

This is the normal sound velocity. Knowing $v_p \approx 10^3 \text{ m s}^{-1}$ and $a \approx 10^{-10} \text{ m}$, we find

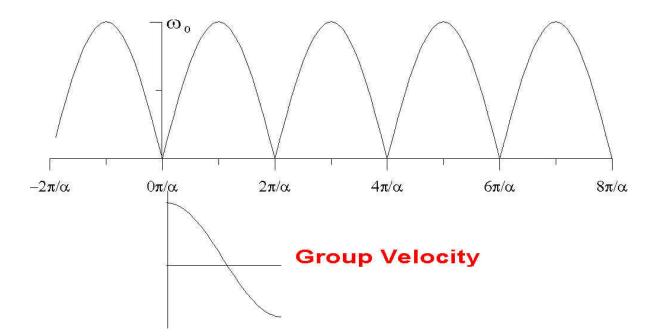
$$\omega_0 \approx 10^{13} \text{ rad s}^{-1},$$

so that maximum frequencies of lattice vibrations are THz (10^{12} Hz). In the infrared range.

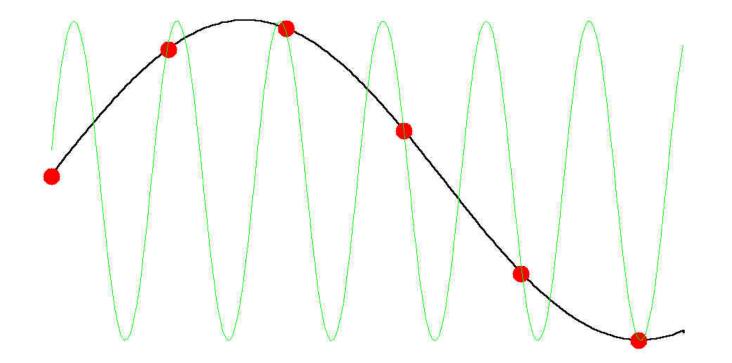
4.1.2 The Brillouin Zone

The dispersion is periodic in k. The frequency at k is the same as at $k + 2\pi/a$.

Dispersion relation in extended zone

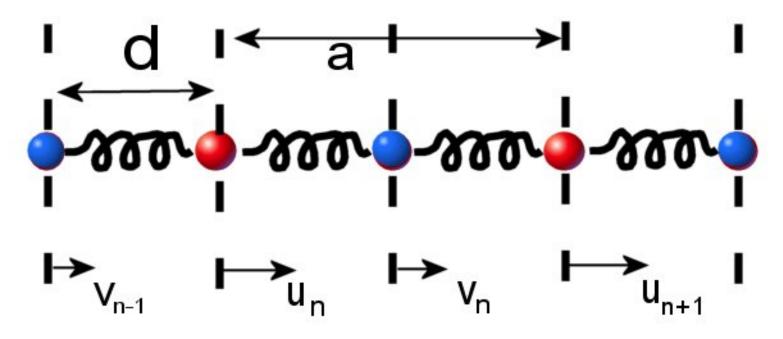


We only sample the wave at the atomic positions, so we cannot tell the waves k and $k + 2\pi/a$ apart.



Conventionally, we only consider the wavevectors between $-\pi/a$ and π/a . This region corresponds to a *unit cell in reciprocal space*. Symmetrical treatment of waves travelling to right or left. Just as the physics is determined by the contents of a unit cell in real space, it is also determined by the behaviour of a unit cell in reciprocal space.

4.1.3 More than one atom per cell



Assume atoms of mass m are at u_n , atoms of mass M at v_n . Let the atoms be d apart, with the unit cell side still a. If the force constant is

again α we get coupled equations:

$$m\ddot{u}_n = \alpha(v_n + v_{n-1} - 2u_n)$$

$$M\ddot{v}_n = \alpha(u_n + u_{n+1} - 2v_n).$$

Again look for travelling waves,

 $u_n(t) = A \exp(ikna - i\omega t)$ $v_n(t) = B \exp(ik(na + d) - i\omega t).$

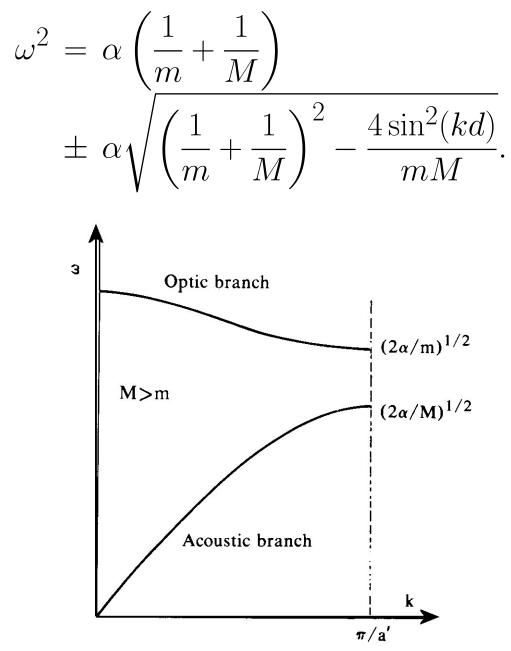
Substitute, and for simplicity take a = 2d,

$$m\omega^2 A = 2\alpha (A - B\cos(kd))$$
$$M\omega^2 B = 2\alpha (B - A\cos(kd)).$$

This is a pair of linear homogeneous equations in A and B, which only has a non-trivial solution if the determinant of the coefficients is zero, that is

$$\begin{vmatrix} 2\alpha - m\omega^2 & -2\alpha \cos(kd) \\ -2\alpha \cos(kd) & 2\alpha - M\omega^2 \end{vmatrix} = 0,$$

which has solutions



Summary

- Lattice vibrations linear chain
- Periodic nature of dispersion curve
- Unit cell in k-space (Brillouin zone)
- Lattice vibrations in non-monatomic systems

Next:

- Phonons
- Thermal energy