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Specific Heats

To recapitulate:

e Lattice vibrations, in the harmonic approximation, described as
normal modes of the crystal;

e Each normal mode has the same Hamiltonian as a harmonic os-

cillator;
e The energy in each normal modek is (nj, + 3)hwy;

Calculate the specific heat, by adding the contributions of all the
modes.

e Assume a continuous spread of frequencies/energies

¢ Find how many normal modes there are in a given range of fre-
quency

e Remember specific heat of harmonic oscillator of frequency
e Integrate over w

4.3 Phonon Density of States
4.3.1 One Dimension y(k)

Take crystal of length L, and imposeperiodic boundary conditionsso
that for a wave
exp(ikz) = exp(ik(x + L)),
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wheren is an integer. The allowed states are uniformly distributed in
reciprocal space (k-space) with spacin@n/ L.

The density of states is the inverse of the spacing,
L
k)=—.
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The number of allowed states with wavevectors betweenand k + dk
is g(k) dk. Note that if there are N unit cells so that L = Na the total
number of allowed states in the Brillouin zone is
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The number of allowed states in the Brillouin zone is equal to the
number of unit cellsin the system. N.B. unit cells, not atoms. More
atoms— more degrees of freedom— more branches of the spectrum.



4.3.2 Assumption of Continuous Energy

How closely spaced are the energy levels? Suppose the crystal is
0.01 m long. Then the spacing betweeh values iSAk = 27/L =
2007 m~L. If the sound wave speed is = 5000 m s~! then on the
acoustic branch the minimum angular frequency is 0 and the next
is Aw = vAk = 5000 x 2007 = 107 rad s~!. This is small enough
compared with the maximum frequency (about10'3 rad s~!) that re-
placing a sum over discrete frequencies with an integral is a good
approximation.

The energy spacing isAE = hAw ~ 3 x 10728 J =2 x 1077 eV.

4.3.3 One Dimensiony(F)
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Go from evenly spaced allowed values of to, in general, unevenly
spaced values of energy. Note that positive and negati%ehave same
E.

Define the density of states in frequency: number of allowed states
betweenw and w + dw is g(w) dw. This must be the same as the
number in the region of k-space containing states in that frequency
interval, soin0 < k < 7/a

9(w) dw = g(k) dk,

or
dk dw

9(w) = g(k)—= = g(k)/ ==
Allowing also for the states with negativek we get in one dimension
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the group velocity of the wave.Non-dispersive systemy, is constant,
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g(w) = — = constant.
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Monatomic chain
w = wysin(ka/2),
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One-dimensional density of states for real monatomic structure, non-
dispersive system (Debye model), and real diatomic structure.
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Note that in one dimension we have singularities whenever the(k)
curve is flat.

4.4 Three dimensions — g(E)
Apply periodic boundary conditions along x, y and z. The number
of states in the reciprocal space volumék,dk,dk; is then

o) dkydkydk, = 53 dkydkydk.,

for crystal volume V. Now assume that the crystal igsotropic — w
depends only on magnitude of, not its direction. Then
dkydkydk, = 4nk’dk

and the number of states with modulus of wavevector betweeh and
k+dkis
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Here we've accounted for all directions, so no extra factor of 2 as in
one dimension when going tg(w).

But we do have to include all the modes (acoustic, optic, longitudinal,
transverse), each with its own dispersion relation, so

V 2 de
g(w) = ﬁgk(ws) /@7

where s denotes the modeNon-dispersive systefiwe assume that

i.e. the sound speed does not depend on frequency, we have
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If we define an average sound speedby
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where (...) denotes an average. e.g.
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Here S is the number of branches in the phonon spectrum — 3 for a
monatomic 3-D solid.



4.4.1 Special case - single frequency

If we assume (the Einstein model)

o < <2 < 2

All atoms except one fixed - Einstein model

we get a delta-function density of states.

Density of states

Waves - linear dispersion Local oscillators
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N.B. Einstein model can be used as model of narrow optical branch
of phonon spectrum.
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Figure The density of normal modes in a three-dimensional crystal. (a)

The Debye model, (b) The density of states for Ge, as calculated with the adiabatic
bond charge model (Weber 1977).

Real density of states: complicated structure — no singularities (con-
trast 1-D), but discontinuities in slope.

4.4.2 Quantised Simple Harmonic Oscillator

(Revision of 2B28) For an oscillator of frequencyw in its nth energy
level the partition function is
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Free energy
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The crucial result is the mean occupation number of the:th level: 2
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Higher frequency — lower occupancy at given temperature. Entropy The decrease in free energy withl" is due to an increase in
entropy. atp =0
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IncreaseT’, increaseS: more displacement from equilibrium position



means moredisorder.

Specific heat:

C OF
o7’
Saturates about
A . T =holk,
Specific

Heat

Rises about T
T =ho/3kg

e low T': exponential dependence&’ « T2 exp(—Hhw/kpT
e intermediate 7' ~ hw/3kp: steep rise inC

e high T' > fw/kp: C saturates to classical result(' = kg per oscil-
lator.

e C' universal function of 7'/0, where © = fiw/kp



