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Specific Heats
To recapitulate:

• Lattice vibrations, in the harmonic approximation, described as
normal modes of the crystal;

• Each normal mode has the same Hamiltonian as a harmonic os-
cillator;

• The energy in each normal modek is (nk + 1
2)~ωk;

Calculate the specific heat, by adding the contributions of all the
modes.

• Assume a continuous spread of frequencies/energies

• Find how many normal modes there are in a given range of fre-
quency

• Remember specific heat of harmonic oscillator of frequencyω

• Integrate over ω
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4.3 Phonon Density of States

4.3.1 One Dimension -g(k)

Take crystal of lengthL, and imposeperiodic boundary conditions, so
that for a wave

exp(ikx) = exp(ik(x + L)),

so
exp(ikL) = 1,

or
k = n

2π

L
,

wheren is an integer. The allowed states are uniformly distributed in
reciprocal space (k-space) with spacing2π/L.
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The density of states is the inverse of the spacing,

g(k) =
L

2π
.

The number of allowed states with wavevectors betweenk and k +dk
is g(k) dk. Note that if there are N unit cells so thatL = Na the total
number of allowed states in the Brillouin zone is∫ π/a

−π/a
g(k)dk =

L

2π
× 2

π

a
=

L

a
= N.

The number of allowed states in the Brillouin zone is equal to the
number of unit cells in the system. N.B. unit cells, not atoms. More
atoms→more degrees of freedom→more branches of the spectrum.
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4.3.2 Assumption of Continuous Energy

How closely spaced are the energy levels? Suppose the crystal is
0.01 m long. Then the spacing betweenk values is∆k = 2π/L =
200π m−1. If the sound wave speed isv = 5000 m s−1 then on the
acoustic branch the minimum angular frequency is 0 and the next
is ∆ω = v∆k = 5000 × 200π = 106π rad s−1. This is small enough
compared with the maximum frequency (about1013 rad s−1) that re-
placing a sum over discrete frequencies with an integral is a good
approximation.
The energy spacing is∆E = ~∆ω ≈ 3× 10−28 J = 2× 10−9 eV.
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4.3.3 One Dimension:g(E)

Go from evenly spaced allowed values ofk to, in general, unevenly
spaced values of energy. Note that positive and negativek have same
E.
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Define the density of states in frequency: number of allowed states
betweenω and ω + dω is g(ω) dω. This must be the same as the
number in the region of k-space containing states in that frequency
interval, so in 0 < k < π/a

g(ω) dω = g(k) dk,

or
g(ω) = g(k)

dk

dω
= g(k)/

dω

dk
.

Allowing also for the states with negativek we get in one dimension

g(ω) = 2
L

2π

dk

dω
.

dω

dk
= vg,

the group velocity of the wave.Non-dispersive systemvg is constant,
so

g(ω) =
L

πvg
= constant.

Monatomic chain
ω = ω0 sin(ka/2),
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so

vg =
aω0

2
cos(ka/2)

=
aω0

2

√
1− sin2(ka/2)

=
aω0

2

√
1− ω2/ω2

0

=
a

2

√
ω2

0 − ω2.

and then
g(ω) =

2L

πa
√

ω2
0 − ω2

.
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One-dimensional density of states for real monatomic structure, non-
dispersive system (Debye model), and real diatomic structure.

Note that in one dimension we have singularities whenever theω(k)
curve is flat.

9



4.4 Three dimensions – g(E)

Apply periodic boundary conditions along x, y and z. The number
of states in the reciprocal space volumedkxdkydkz is then

LxLyLz

(2π)3
dkxdkydkz =

V

8π3
dkxdkydkz,

for crystal volume V . Now assume that the crystal isisotropic – ω
depends only on magnitude ofk, not its direction. Then

dkxdkydkz = 4πk2dk

and the number of states with modulus of wavevector betweenk and
k + dk is

g(k)dk =
V

8π3
4πk2dk =

V

2π2
k2dk

Here we’ve accounted for all directions, so no extra factor of 2 as in
one dimension when going tog(ω).
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But we do have to include all the modes (acoustic, optic, longitudinal,
transverse), each with its own dispersion relation, so

g(ω) =
V

2π2

∑
s

k(ωs)
2/

dωs

dk
,

wheres denotes the mode.Non-dispersive systemIf we assume that

ωs(k) = vsk,

i.e. the sound speed does not depend on frequency, we have

k(ωs) =
ω

vs
,

and
dk

dωs
=

1

vs
,

so

g(ω) =
V

2π2

∑
s

ω2

v3
s
.
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If we define an average sound speedv by

1

v3
=

〈
1

v3
s

〉
,

where 〈...〉 denotes an average. e.g.

1

v3
=

1

3

[
1

v3
L

+
2

v3
T

]
,

then

g(ω) =
V

2π2

Sω2

v3
.

Here S is the number of branches in the phonon spectrum – 3 for a
monatomic 3-D solid.
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4.4.1 Special case - single frequency

If we assume (the Einstein model)

we get a delta-function density of states.
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N.B. Einstein model can be used as model of narrow optical branch
of phonon spectrum.
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Real density of states: complicated structure – no singularities (con-
trast 1-D), but discontinuities in slope.

15



4.4.2 Quantised Simple Harmonic Oscillator

(Revision of 2B28) For an oscillator of frequencyω in its nth energy
level the partition function is

Z =

∞∑
n=0

exp

(
− En

kBT

)
=

∞∑
n=0

exp

(
−(n + 1/2)~ω

kBT

)
=

1

2 sinh
(

~ω
2kBT

)
=

1

2 sinh
(

β~ω
2

)
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〈E〉 = −∂ ln Z

∂β

= (〈n〉 +
1

2
)~ω,

The crucial result is the mean occupation number of thenth level:

〈n〉 =
1

exp(~ω/kBT )− 1
,

for Bose-Einstein statistics.
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Higher frequency→ lower occupancy at given temperature.
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Free energy

F = −kB ln(Z)

= kBT ln

(
sinh

(
~ω

2kBT

))
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Entropy The decrease in free energy withT is due to an increase in
entropy. at p = 0

S =
E − F

T
.

IncreaseT , increaseS: more displacement from equilibrium position
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means moredisorder.
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Specific heat:

C =
∂E

∂T
.
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• low T : exponential dependenceC ∝ T−2 exp(−~ω/kBT

• intermediate T ≈ ~ω/3kB: steep rise inC

• high T > ~ω/kB: C saturates to classical result,C = kB per oscil-
lator.

• C universal function of T/Θ, whereΘ = ~ω/kB
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