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4.5 Experimental Specific Heats

Element Z A Cp Element Z A Cp

J K tmol ! J K tmol—1
Lithium 3 6.94 24.77 Rhenium 75 186.2 25.48
Berylium 4 9.01 16.44 Osmium 76 190.2 24.70
Boron 5 10.81 11.06lridium 77 192.2 25.10
Carbon 6 12.01 8.53Platinum 78 195.1 25.86
Sodium 11 22.99 28.2450ld 79 197.0 25.42
Magnesium 12 24.31 24.8Mercury 80 200.6 27.98
Aluminium 13 26.98 24.35Thallium 81 204.4 26.32
Silicon 14 28.09 20.00_ead 82 207.2 26.44
Phosphorus 15 30.97 23.88Bismuth 83 209.0 25.52

Sulphur 16 32.06 22.64Polonium 84 209.0 25.75
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Classical equipartition of energy gives specific heat afp R per mole,
where p I1s the number of atoms in the chemical formula unit. For
elements,3R = 24.94 J K~! mol~!. Experiments by James Dewar
showed that specific heat tended to decrease with temperature.
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Albert Einstein 1879-1955

Einstein (1907): “If Planck’s theory of radiation has hit upon the
heart of the matter, then we must also expect to find contradictions
between the present kinetic molecular theory and practical experi-

ence in ot

ner areas of heat theory, contradictions which can be re-

moved int

ne same way.”



Einstein’s modellf there are N atoms In the solid, assume that each
vibrates with frequency w in a potential well. Then
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This iIs the expected classical limit.
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Convenient to define Einstein temperaturePy = hw/kg.
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Comparison of experimental values of the heat capacity of
diamond with values calculated on the Einstein model, using the char-
acteristic temperature O = fiw/kg = 1320°K. [After A. Einstein,
Ann. Physik 22, 180 (1907).]



¢ Einstein theory shows correct trends with temperature.
e For simple harmonic oscillator, spring constanta, massm, w =

va/m.

e So light, tightly-bonded materials (e.g. diamond) have high fre-
guencies.

e But higher w — lower specific heat.
e Hence Einstein theory explains low specific heats of some elements



Walther Nernst (1864-1941)
Walther Nernst, working towards the Third Law of Thermodynam-

Ics (As we approach absolute zero the entropy change in any process
tends to zero), measured specific heats at very low temperature.



i = il
3 %
¥ 4 4
7
=
Q
i N ]
= 2
e
=9
O

0

0 50 100 150 200 250

Temperature (°K)

Specific heat data (points) for silver. The lines are the fits from the
Einstein and Debye results. The Debye curve goes through the data points.

Systematic deviations from Einstein model at low T. Nernst and Lin-
demann fitted data with two Einstein-like terms.Einstein realised that
the oscillations of a solid were complex, far from single-frequency.
Key point is that however low the temperature there are always some
modes with low enough frequencies to be excited.



4.6 Debye Theory

Peter Debye, 1884-1966.

Based on classical elasticity theory (pre-dated the detailed theory of
lattice dynamics).



The assumptions of Debye theory are

e the crystal is harmonic

e elastic waves in the crystal are non-dispersive

ot
ot

ne crystal is isotropic (no directional dependence)
nere Is a high-frequency cut-offwp determined by the number of

C

egrees of freedom



4.6.1 The Debye Frequency

The cut-off wp Is, frankly, a fudge factor.

If we use the correct dispersion relation, we gey(w) by integrating
over the Brillouin zone, and we know the number of allowed values
of £ in the Brillouin zone is the number of unit cells in the crystal, so
we automatically have the right number of degrees of freedom.

In the Debye model, define a cutoffu) by

WD
N=/ g(w)dw,
0

where N is the number of unit cells in the crystal, andg(w) is the
density of states in one phonon branch.



Taking, as in Lecture 10, an average sound speadwe have for each
mode

SO

3 6N’7T2 3
wp = (Y

Equivalent to Debye frequencywp is ©p = hwp/kp, the Debye tem-
perature.



4.6.2 Debye specific heat

Combine the Debye density of states with the Bose-Einstein distri-

bution, and account for the number of branchesS of the phonon
spectrum, to obtain
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Simplify this by writing

and




Remember that
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As with the Einstein model, there is only one parameter —in this case
Op.



Improvement over Einstein model.
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Debye and Einstein models compared with experimental data for Sil-
ver. Inset shows details of behaviour at low temperature.



4.6.3 Debye model: high T

TS D 4 x
Cy = 3N Skp— ~C_da.
Op”Jo (e —1)
At high T, xp = hwp/kgT is small. Thus we can expand the inte-
grand for small x:

and
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The specific heat, then, is
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This is just the classical limit,3R = 3N kg per mole. We should have
expected this: asl’ — oo, Cyy — kg for each mode, and the Debye
frequency was chosen to give the right total number of oscillators.



4.6.4 Debye model: low T

TS D 4 x
Cy = 3N Skp— ~C_da.
Op°Jo (e? —1)
At low, xp = Awp/kpT is large. Thus we may let the upper limit of
the integral tend to infinity.
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For a monatomic crystal in three dimensionsS = 3, and IV, the num-
ber of unit cells, is equal to the number of atoms. We can rewrite this

as ;
T
Cryy~ 1944 | —
v <@D>

which is accurate forT < ©p/10.

SO

OV ~ SNS/GB
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The low-temperature heat capacity of solid argon compared with
the Debye T° prediction with ©p = 92 K (solid line).



4.6.5 Successes and shortcomings

Debye theory works well for a wide range of materials.

T 717 T T T T 1T T T T T T 1
7 ° O x0T +-x-e»'ﬂﬁx'+'?"°6x°'ﬂn+‘ﬁ—uﬂ+‘ﬂ—+ﬁ
|
o)
n 4 f —
2
o + Al
E 3 o CaF, o
= o Cu
Kol 2 v KCI —
> ¢ NaCl
O x Pb
1 0 Zn —
| | | | l | | { | | | | |

0O 02 04 06 08 10 12 14 16 18 20 22 24 26 28
T/Op

Heat capacity vs. reduced temperature for a number of materials.

But we know it can’t be perfect.
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Density of modes in Na (after A. E. Dixon et al.,
Proc. Phys. Soc. 81, 973 (1963)).

Roughly: only excite oscillators at7" for which w < kgT'/h. So we
expect:

e Very low T: OK

e Low T: real DOS has more low-frequency oscillators than Debye,
so 'y, higher than Debye approximation.

e High T: real DOS extends to higherw than Debye, so reaches clas-
sical limit more slowly.



Use Debye temperaturép as a fitting parameter: expect:
e Very low T: good result with ©p from classical sound speed,
e Low T: rather lower ©Op;
e High T: need higher ©p,.
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The temperature dependence of Oy, metalic sodium [J. D.
Filby and D. L. Martin, Proc. Roy. Soc. (London) 276A, 187 (1963).]
Val [W.T. Berg and J. A. Morrison, Proc. Roy. Soc. (London) 2424, 467 (1957)L.
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