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Thermal Conductivity

Previous Lecture

• Specific heats always tend to classical limit at highT .

• CV decreases with decreasingT .

• Einstein model decreases too rapidly at lowT

• Debye model gives correctT 3 dependence at lowT .

• Debye temperatureΘD as

– correction factor to get right number of degrees of freedom;
– fitting parameter.
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4.7 Lattice Thermal Conductivity

4.8 Experimental values
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• Different behaviours of metals compared with insulators and semi-
conductors;

• Very large range of values: for elements at roomT

– diamond: up to 2600 W K−1m−1

– copper: 400 W K−1m−1

– sulphur: 0.3 W K−1m−1

In the following sections we look at thermal conduction by lattice
vibrations.
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4.8.1 Phonons as particles

If mode k is in its nkth excited state, as the energy levels are equally
spaced, we can regard this as a state withnk identical excitations in
modek, each with energy~ωk. We say there arenk phonons in mode
k – exact analogy with photons. The phonon has energy~ωk and mo-
mentum ~k. We can think of the phonon as a particle (quasiparticle).
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4.8.2 Phonon momentum

The momentum of phonons is rather different to normal momentum.
Conservation of momentum is a fundamental property of most sys-
tems: it is a result of the fact that the Hamiltonian of a free particle
is invariant under translation (p commutes withH). In a crystal,
the Hamiltonian is only invariant under translation through a lattice
vector R. As a result, momentum in the crystal in only conserved to
within an additive constant ~G, whereG is a reciprocal lattice vec-
tor. ~k is not a true momentum of the whole crystal – except atk = 0
when it corresponds to uniform motion of the whole crystal. ~k is
calledquasimomentum.
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4.8.3 Phonon interactions

In the harmonic approximation we ignored terms in the Hamiltonian
like ∑

nn′n′′
unun′un′′Dnn′n′′,

and got normal modes which did not interact. When we look for
wave-like solutions, we have terms of the form∑

kk′k′′

∑
n

Akk′k′′ exp(i(k + k′ + k′′).Rn),

and, as in our discussion of diffraction, the sum will be zero because
of phase cancellation unless

(k + k′ + k′′).Rn = 2mπ

wherem is an integer. But if G is a reciprocal lattice vector,G.Rn is
a multiple of 2π, so all we can say is that

k + k′ + k′′ + G = 0.
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As a result of the anharmonic terms, we have phonon-phonon inter-
actions. Physical explanation: a phonon alters the local atomic spac-
ing, so that another phonon sees a difference in the crystal structure
and is scattered by it.
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4.8.4 Heat Transport

Treat phonons as a classical gas of particles, transporting energy~ω
at velocity v, the group velocity of the waves. Hot regions have a
higher density of phonons than cool regions. Heat flux (energy/area/time)
Q:

Q = −κ∇T,

and κ depends on

• number of particles/volume carrying energyn

• specific heat per carriercV
• carrier velocity v

• how far carrier travels before being scattered (mean free pathΛ)
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From kinetic theory of gases

κ =
1

3
nvcV Λ.

Note that ncV is the specific heatper volume– contrast the specific
heat per molecalculated earlier. Unless the phonons interact with
something (are scattered) the thermal conductivity will be infinite.
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4.8.5 Boundary scattering

Clearly Λ is limited by the size of the specimen. Generally, the speci-
men is polycrystalline –Λ is limited by the crystallite size.
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4.8.6 Point defect scattering

Any irregularity in the crystal will scatter a wave. An impurity, or
even a different isotope, creates an irregularity. The defect size is
about that of an atom. But at low temperatures only low-energy,
long-wavelength phonons are excited. Scatterer size<< λ is the
condition for Rayleigh scattering → Λ ∝ λ4. Dominant phonons
at temperature T havek ∝ T , λ ∝ T−1, and at low T the number of
phonons∝ T 3 suggestingκ ∝ T 3×T−4 = T−1. More exact treatment

κ ∝ T−
3
2.
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4.8.7 Phonon-phonon scattering

At first glance, expect phonon scattering to preserve thermal current,
as energy and momentum are both conserved:

k1 + k2 = k3

ω1 + ω2 = ω3

so even if phonons interact, they continue to carry the energy in the
same direction. But remember that the dispersion relation is periodic
– this makes a difference.
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If the two initial wavevectors add to a new wavevector which is out-
side the Brillouin zone, they give a new wave with a group velocity
in the opposite direction. Usually, subtractG, a reciprocal lattice
vector, to get back into the Brillouin zone:

k1 + k2 −G = k3.

Such a process is called anUmklapp process (German: flip-over)
or U-process. Processes in whichG = 0 are called N-processes.
Note that for a U-process at least one of the phonons must have
|k| > π/(2a) – so very rare at low T. At low T , assume number of
phonons with large enough|k| is∝ exp(−θ/T ), whereθ is a tempera-
ture comparable with the Debye temperature. At highT , most of the
phonons will have large enough|k| to give U-processes, and number
of phonons∝ T .
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4.8.8 Combined processes

Assume all the scattering processed are independent. Each process
acts independently to reduce the conductivity. Analogous to resis-
tances in series, so

total resistance =
∑

processes i

resistancei

or
κ =

1∑
i

1
κi

.

Look at temperature dependence of terms in

κ =
1

3
nvcV Λ;

note that v has negligibleT dependence.
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High T : can always have enough phonons for U-processes to domi-
nate,

• ncV independent ofT (classical limit)

• Λ ∝ T−1

• κ ∝ T−1

Very low T : U-processes are frozen out, and only have very long-λ
phonons so defect scattering small. Boundary scattering dominates:

• ncV ∝ T 3

• Λ independent ofT (geometry)

• κ ∝ T 3
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Low-intermediateT , isotopically pureU-processes dominate:

• ncV only weakly dependent onT compared with

• Λ ∝ exp(θ/T )

• κ ∝ exp(θ/T

Low T , impuredefect scattering dominates:

• ncV ∝ T 3

• Λ ∝ T−9/2

• κ ∝ T−3/2
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Schematic variation ofκ with T for isotopically pure (left) or impure
(right) material.

Note steeper rise to higher peak value for pure material.
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Thermal conductivity of LiF as function of temperature for varying
content of 6Li isotope.

Defect content can be increased by irradiation (e.g. neutron damage
in nuclear reactor).
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Thermal conductivity of LiF as function of specimen size at low tem-
perature, showing effect of boundary scattering.
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Thermal conductivity of LiF plotted as κ/T 3 as function of tempera-
ture for low temperature.
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Summary

• Phonon scattering limits thermal conductivity

• scattering processes

– phonon-phonon
– phonon-defect
– phonon-grain boundary
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