Solid State Physics

ELECTRONS IN SOLIDS Lecture 13

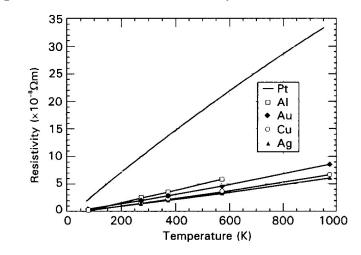
A.H. Harker Physics and Astronomy UCL

5 Electrons in Solids - Overview

5.1 Experimental values

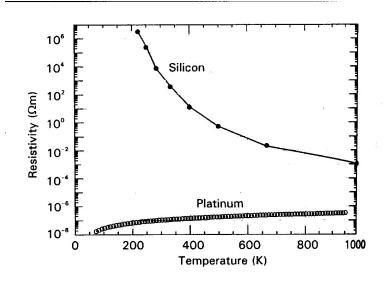
5.1.1 Electrical Resistivity

Element	Resistivity (Ωm)	Element	Resistivity (Ω m)
Lithium		Germanium	0.46
Sodium	4.2×10^{-8}	Selenium	10^{-2}
Sodium	4.2×10^{-8}	Silicon	10^{-3}
Copper	1.7×10^{-8}	Tellurium	4.4×10^{-3}
Silver	1.6×10^{-8}		
Tin	1.1×10^{-7}	Boron	1.8×10^{4}
Barium		Phosphorus	10^{9}
Manganese	1.9×10^{-6}	C (diamond)	10 ¹¹

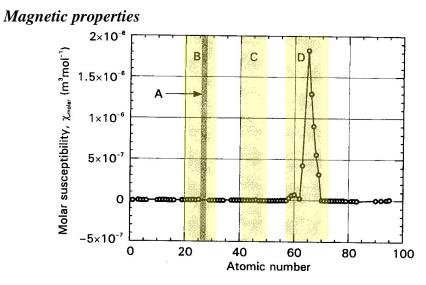

Divide materials into:

- *metals* resistivities between 10^{-8} and $10^{-5} \Omega m$;
- semiconductors resistivities between 10^{-5} and $10 \Omega m$;
- *insulators* resistivities above $10 \Omega m$;
- superconductors have unmeasurably small resistivities

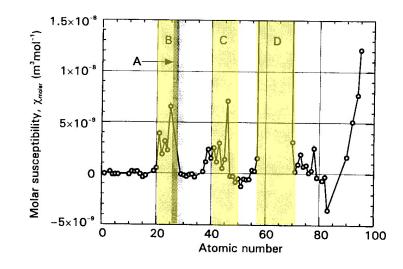
all at room temperature.


Note the enormous range of values.

The temperature variations are also very different:



4


For most metals, $\rho \propto T$.

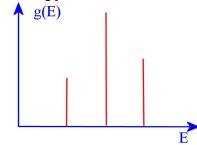
Semiconductors (and insulators) have much stronger temperature dependence of ρ – and in the opposite direction with T.

Yellow regions are ferromagnetic Fe, Co, Ni (A); first transition series (B), second transition series (C) and lanthanides (D) – all elements with part-filled inner electron shells.

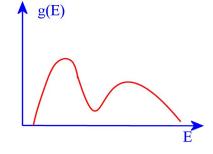
Yellow regions are ferromagnetic Fe, Co, Ni (A); first transition series (B), second transition series (C) and lanthanides (D) – all elements with part-filled inner electron shells.

8

We might expect	some sort of	'law of mixtures	' for alloys, but


Resistivities at room T in $\Omega m \times 10^8$			
Component1	Alloy	Component2	
Cu	Cu(Zn)	Zn	
1.55	6.3	5.5	
Pt	Pt(10% Ir)	Ir	
9.8	25	4.7	
Pt	Pt(10% Rh)	Rh	
9.8	19	4.3	

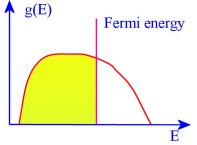
Adding a trace of low-resistivity Ir to Pt has *increased* the Pt's resistivity.


We need to explain

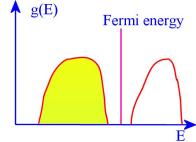
- the *diamagnetism* which is always present;
- paramagnetism seen in metals and other materials
- ferromagnetism
- magnetic effects on resistivity
- special magnetic properties (perfect diamagnetism) of superconductors

We are going to introduce the *band theory* of electrons in solids. Just as electrons in atoms occupy certain allowed levels:

so electrons in solids occupy bands of allowed states:



11


Miscellaneous properties

- Work function and contact potentials of metals
- Extra specific heat above 3R per mole
- Optical properties
 - transparent clear and coloured
 - opaque
 - metallic silvery or coloured
- thermionic emission (electrons 'boil off')
- field emission
- high thermal conductivity of metals
- plasma frequency of metals
- x-ray spectra of solids
- thermoelectricity

In a metal there is no gap between the occupied and unoccupied states:

In an insulator or semiconductor there is a gap.

Note that the distinction between metals and insulators/semiconductors is definite: in metals there is no gap in the density of states at the Fermi energy at T = 0, in the others there is; the difference between semiconductors and insulators is quantitative, and depends on the *size* of the gap. Semiconductors have band gaps ranging up to 2 eV or less – insulators have larger gaps. Intuitively, it is obvious that we can 'do things to' the electrons, such as accelerate them, with little difficulty in a metal, but in semiconductors and insulators we have to promote them across the gap first.