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6 The Free Electron Model

6.1 Basic Assumptions

In the free electron model, we assume that the valence electrons can
be treated as free, or at least moving in a region constant potential,
and non-interacting. We’ll examine the assumption of a constant po-
tential first, and try to justify the neglect of interactions later.
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6.1.1 Constant Potential

Imagine stripping the valence electrons from the atoms, and arrang-
ing the resulting ion cores on the aatomic positions in the crystal.

Resulting potential – periodic array of Coulombic attractions.
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From atomic theory, we are used to the idea that different electronic
functions must be orthogonal to each other (remember we used this
idea in discussing the short-range repulsive part of interatomic po-
tentials) i.e. if ψc(r) is a core function andψv(r) is a valence function∫

ψc(r)ψv(r)dr = 0.

Let’s see how orthogonality might be achieved for a slowly-varying
wave.
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To achieve orthogonality:

we need high spatial frequency (largek) components in the wave.
Large k → large energy.
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So the extra energy caused by the orthogonality partly cancels the
Coulomb potential. This can be formalised inpseudopotential theory.
The potential is weakened,

and the constant potential assumption is a reasonable one. The net
result is that the effective potential seen by the electrons does not
have very strong dependence on position.
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So finally we assume that the attractive potential of the ion cores can
be represented by a flat-bottomed potential.

We go further, and assume that the potential is deep enough that we
can use a simple ‘particle-in-a-box’ model – the free electron model.
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6.1.2 Free Electron Fermi Gas

For the particle in a box with potential V

− ~2

2m
∇2ψ + Vψ = E′ψ,

or, with a shift of origin for energy, E′ − V → E,

− ~2

2m
∇2ψ = Eψ,

so that the wavefunctions have the form

ψk(r) =
1√
V

exp(ik.r),

where V is the volume of the material. These are travelling waves,
with energies

Ek =
~2k2

2m
,

dependent only onk = |k|. Note thatEk depends only on themagni-
tudeof k, not its direction.
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So we can use the result from section 4.4 (Lecture 10) that the number
of states with modulus of wavevector betweenk and k + dk is

g(k)dk =
V

8π3
4πk2dk =

V

2π2
k2dk.

For electrons

dE

dk
=

~2k

m
=

~2

m

√
2mE

~2
=

~√
m

√
2E.

We also need to include a factor of 2 for spin up and spin down.

g(E) = 2g(k)
dk

dE

= 2
V

2π2
k2 dk

dE

= 2
V

2π2

2mE

~2

√
m

~
√

2E

=
V m

π2~3

√
2mE.

Note that asV increases, so does the density of states.
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6.1.3 The Fermi Energy

Remember that the Fermi distribution function n(E)

n(E) =
1

exp((E − EF )/kBT ) + 1
at absolute zero is 1 up to the Fermi energyEF. Suppose the volume
V containsNe electrons. Then we know

Ne =

∫ ∞

0
g(E)n(E)dE

=

∫ EF

0
g(E)dE

=
V
√

2m3

π2~3

∫ EF

0

√
E dE

=
V
√

2m3

π2~3

2EF
3/2

3
so

EF =
~2

2m

(
3π2Ne
V

)2/3

.
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We can define two related quantities:

• Fermi temperature, TF,

TF = EF/kB.

• Fermi wavevector,kF, the magnitude of the wavevector correspond-
ing to kF,

EF =
~2kF

2

2m
so

kF =

(
3π2Ne
V

)1/3

.
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6.1.4 Orders of magnitude

For a typical solid, the interatomic spacing is about2.5 × 10−10 m.
Assume each atom is in a cube with that dimension, and releases one
valence electron, giving an electron densityNe/V ≈ 6 × 1028 m−3.
Putting in the numbers, we find

• EF ≈ 9× 10−19 J = 6 eV;

• TF ≈ 70, 000 K;

• kF ≈ 1.2×1010 m−1, comparable with the reciprocal lattice spacing
2.5× 1010 m−1;

We can also estimate the electron velocity at the Fermi energy:

vF =
~kF

m
≈ 1.4× 106m s−1,

which is fast, but not relativistic.

total energy of electrons =

∫ EF

0
E g(E) dE =

3

5
NeEF,

so that the average energy per electron is35EF.
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6.1.5 The Fermi surface

In later sections we shall talk a good deal about the Fermi surface.
This is an constant-energy surface in reciprocal space (k-space) with
energy corresponding to the Fermi energy. For the free electron gas,
this is a sphere of radiuskF.
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6.2 Some simple properties of the free electron gas

6.2.1 Thermionic emission

If the work function φ is small enough, if the material is heated the
electrons may acquire enough thermal energy to escape the metal. A
small electric field is used to draw them away.

15

The current

J = BT 2 exp

(
− φ

kBT

)
,

with a theoretical value

B =
emkB

2

π~2
= 1.2× 106 A m−2 K−2.

Experimentally the exponential dependence is confirmed, with simi-
lar values for B.
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6.2.2 Field emission

A large applied field alters the potential outside the metal enough to
allow electrons totunnel out.
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Very large fields are needed, but a sharp metal tip can give an image
which shows where the atoms are – fields vary across the atoms.

More detail from newer scanning probe microscopes.
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6.2.3 Photoemission

A photon with energy greater than the work function can eject an
electron from the metal.
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6.2.4 X-ray emission (Auger spectroscopy)

A high-energy electron incident on a metal may knock out an elec-
tron from a core state (almost unchanged from the atomic state). An
alectron from the band can fall into the empty state, emitting an x-
ray.
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6.2.5 Contact potential

If two metals with different Fermi energies are brought into contact,
electrons will move so as to equalize the Fermi levels. As a result, one
becomes positively charged and the other negatively charged, creat-
ing a potential difference which prevents further electron flow.
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Summary

• Justification for neglecting details of crystal potential.

• Fermi energy – several eV

• Fermi surface – comparable with size of Brillouin zone

• Simple properties
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