SOI |d State PhyS|CS Even if we zoom in, we can only just see the change from the step
function at normal temperatures.
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A.H. Harker This means that temperature has very little effect on the energy dis-
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6.3 Thermal Behaviour of free electron gas 6.3.2 Electronic specific heat
6.3.1 Review of Fermi function To a good approximation, we can approximate the effect of tempera-
_ , _ _ ture by drawing a straight line passing through fpp(Erp) = % falling
The key point about electrons in a metal is that the Fermi tempera- from f B e _
e b Fp(EF — 2kpT’) = 110 fpp(Er + 2kpT) = 0.
ture Ty is high — about 10° K.
1 A

TeD = e — k) +1 |
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Thus the effect of increasing temperature changes the energy of the
number of electrons in a triangular region of height ¢(Er)/2 and
width 25T, that is, %g(EF)kBT. These have their energy increased
by about kT (‘%szT if we keep to the triangular model), so that

1
Eiotal = Eo + ég(EF)kBT X kpT,
so that the electronic specific heat is

dE
= — ~ g(Ep)kpT.

Cy ===

Note that

o)

3N kp’T
- 2Bp
A more accurate evaluation gives

7T2 2
Cy = §9<EF>/€B T,

Cy

or ) )
Cv _ T NekB T

2FEp
If we take a typical Ep ~ 5 eV then at 300 KC,, ~ 0.2 J K~ 'mol~!
This is less than one percent of the specific heat from vibrations{
25 J K~ tmol ~1.

6.3.3 Experimental results

At low temperatures, though, the vibrational contribution falls off
as T3, so the vibrational and electronic parts become comparable.
Conventionally write

atlow 7', and so a plot ofC,, /T againstT? should give a straight line.
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Experimental heat capacity values for potassium, plotted as C/T versus T2.

Key point treating the electrons as quantum mechanical particles
has shown their specific heat is reduced by a factor of aboutg7'/ Fr
from the classical result.

6.4 Electrical Conductivity
6.4.1 Classical treatment

A particle acted on by a force F experiences a change in momentum

dp
F=a
and for a classical particle
dv

We know that the electrons in a metal have speeds ranging up to
~ 10° m s~1, in random directions, so that there is no nett movement

of electrons in a particular direction. We assume that the force adds

a general tendency for the electrons to move in the direction of the
force. We call the associated velocity drift velocity, v, and write

dVd

f:mdt.

The electrons will move freely through a perfect crystal — but the
perfection is disturbed by

e defects

—impurities (not different isotopes — these affect phonons as they
have different masses but not electrons as they are electrically
identical)

—dislocations
—grain boundaries
e phonons, locally altering the atomic spacings

e in addition, there may be electron-electron interactions

6.4.2 Relaxation time

Introduce a scattering timeor relaxation timer:
e the probability of an electron’s being scattered in the time interval
dtisdt/T
e at each scattering event the velocity is randomised — the drift ve-
locity is reset to zero

e so the rate at whichuv, returns to zero is

(dvd) . Uq
dt scatter T

e We may have different scattering timesr for different types of
scattering — the different processes are assumed to be independent
(Matthiessen’s rulé

e We can also introduce amean free pathA: but note that the elec-
trons have the Fermi velocityvy as well as the drift velocityv,, and
vq << v, SO the distance travelled in the timer is

/\:TUF.



So the evolution ofvy with time is

dVd Vq .
mldt + T] =F.

There are two important cases:

e Steady statethe time derivative is zero, so
vi_p

-
Fr
Vq = H
e Zero force then
dvgq | vy _0
dt T ’
va(t) = vg(0)e 1/,
showing arelaxation of the drift velocity back to zero with a time
constantr.

6.4.3 Electrical conductivity

If the force arises from an electric field€ then
F = —e&

(note that e is the magnitudeof the charge on the electron — hence the

minus sign).
So the steady-state drift velocity is

eET
Vg = — )
m

which is often expressed in terms of anobility s,

= drift speed in unit field
_ vl

€]

€T

m

Now the electrical current densityJ is

J = (electron charge) x (number of electrons/volume) x (drift velocity)

This gives usOhm’s law, current proportional to field. If we write
n = N./V, we have

J =o€
ne2r
o
m
= nepu.

The quantity ;. = er/m, which is the magnitude of the drift velocity
acquired in unit field, is called the mobility of the electron.



