
Solid State Physics

FREE ELECTRON MODEL
Lecture 15

A.H. Harker
Physics and Astronomy

UCL

6.3 Thermal Behaviour of free electron gas

6.3.1 Review of Fermi function

The key point about electrons in a metal is that the Fermi tempera-
ture TF is high – about105 K.

fFD =
1

exp((e− µ)/kBT ) + 1
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Even if we zoom in, we can only just see the change from the step
function at normal temperatures.

This means that temperature has very little effect on the energy dis-
tribution of the electrons.
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6.3.2 Electronic specific heat

To a good approximation, we can approximate the effect of tempera-
ture by drawing a straight line passing throughfFD(EF) = 1

2, falling
from fFD(EF − 2kBT ) = 1 to fFD(EF + 2kBT ) = 0.
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Thus the effect of increasing temperature changes the energy of the
number of electrons in a triangular region of height g(EF)/2 and
width 2kBT , that is, 1

2g(EF)kBT . These have their energy increased
by about kBT (43kBT if we keep to the triangular model), so that

Etotal ≈ E0 +
1

2
g(EF)kBT × kBT,

so that the electronic specific heat is

Cv =
dE

dT
≈ g(EF)kB

2T.
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Note that
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so

Cv =
3NekB

2T

2EF
.

A more accurate evaluation gives

Cv =
π2

3
g(EF)kB

2T,

or

Cv =
π2NekB

2T

2EF
.

If we take a typical EF ≈ 5 eV then at 300 K Cv ≈ 0.2 J K−1mol−1

This is less than one percent of the specific heat from vibrations (≈
25 J K−1mol−1.
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6.3.3 Experimental results

At low temperatures, though, the vibrational contribution falls off
as T 3, so the vibrational and electronic parts become comparable.
Conventionally write

Cv = γT + AT 3

at low T , and so a plot ofCv/T againstT 2 should give a straight line.
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Key point: treating the electrons as quantum mechanical particles
has shown their specific heat is reduced by a factor of aboutkBT/EF
from the classical result.
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6.4 Electrical Conductivity

6.4.1 Classical treatment

A particle acted on by a forceF experiences a change in momentum

F =
dp

dt
,

and for a classical particle

F = m
dv

dt
.

We know that the electrons in a metal have speeds ranging up to
≈ 106 m s−1, in random directions, so that there is no nett movement
of electrons in a particular direction. We assume that the force adds
a general tendency for the electrons to move in the direction of the
force. We call the associated velocity adrift velocity, vd, and write

F = m
dvd

dt
.
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The electrons will move freely through a perfect crystal – but the
perfection is disturbed by

• defects

– impurities (not different isotopes – these affect phonons as they
have different masses but not electrons as they are electrically
identical)

– dislocations
– grain boundaries

• phonons, locally altering the atomic spacings

• in addition, there may be electron-electron interactions
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6.4.2 Relaxation time

Introduce a scattering timeor relaxation timeτ :

• the probability of an electron’s being scattered in the time interval
dt is dt/τ

• at each scattering event the velocity is randomised – the drift ve-
locity is reset to zero

• so the rate at whichvd returns to zero is(
dvd

dt

)
scatter

= −vd

τ

• we may have different scattering timesτ for different types of
scattering – the different processes are assumed to be independent
(Matthiessen’s rule)

• we can also introduce amean free pathΛ: but note that the elec-
trons have the Fermi velocityvF as well as the drift velocityvd, and
vd << vF, so the distance travelled in the timeτ is

Λ = τvF.
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So the evolution ofvd with time is

m

[
dvd

dt
+

vd

τ

]
= F .

There are two important cases:

• Steady state: the time derivative is zero, so

m
vd

τ
= F ,

vd =
Fτ

m
.

• Zero force: then
dvd

dt
+

vd

τ
= 0,

vd(t) = vd(0)e−t/τ ,

showing arelaxation of the drift velocity back to zero with a time
constantτ .
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6.4.3 Electrical conductivity

If the force arises from an electric fieldE then

F = −eE
(note that e is themagnitudeof the charge on the electron – hence the
minus sign).
So the steady-state drift velocity is

vd = −eEτ

m
,

which is often expressed in terms of amobility µ,

µ ≡ drift speed in unit field

=
|vd|
|E|

=
eτ

m
.
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Now the electrical current densityJ is

J = (electron charge)× (number of electrons/volume)× (drift velocity)

= −e
Ne

V
vd

=
Nee

2τ

V m
E

=
Ne

V
eµE .

This gives usOhm’s law, current proportional to field. If we write
n = Ne/V , we have

J = σE

σ =
ne2τ

m
= neµ.

The quantity µ = eτ/m, which is the magnitude of the drift velocity
acquired in unit field, is called themobility of the electron.
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