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Magnetic Effects

6.7 Plasma Oscillations

The picture of a free electron gas and a positive charge background
offers the possibility ofplasma oscillations– a collective motion of all
the electrons relative to the background.
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If electron gas,n electrons per volume, moves a distancex relative to
the positive background this gives a surface charge density

σ = −enx

on the positivex side. But this gives an electric field

E = −σ

ε0
,

which tries to restore the electrons to their equilibrium position by
exerting a force

F = −eE = −ne2

ε0
x

on each electron. So

mẍ = −ne2

ε0
x,
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which is a simple harmonic oscillator with angular frequencyωP

ω2
P =

ne2

ε0m
.

For example, if n = 6× 1028 m−3,

ωP =

√
ne2

ε0m
=

√
6× 1028 × (1.6× 10−19)2

8.854× 10−12 × 9.11× 10−31
= 1.4× 1016 rad s−1.

This corresponds to an energy

~ωP = 8.9 eV.
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If high energy (1 to 10 keV) electrons are fired through a metal film,
they can lose energy by exciting plasma oscillations, orplasmons.
Volume plasmon energies, eV
Metal Measured Calculated
Li 7.12 8.02
Na 5.71 5.95
K 3.72 4.29
Mg 10.6 10.9
Al 15.3 15.8

Another success for free electron theory.
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6.8 The Hall Effect

In a Hall experiment a magnetic field applied perpendicular to an
electric current flowing along a bar.

We need to extend our previous equation
by including the Lorentz force qv × B.
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Signs always cause problems in the Hall effect: avoid some confusion
by writing q for the charge on the particles carrying the current –q
includes the sign. The new transport equation is

m

(
dvd

dt
+

vd

τ

)
= q(E + vd × B).

Asssume thatB = (0, 0,Bz) and E = (Ex, Ey, Ez) so

m
dvdx

dt
+ m

vdx

τ
= qEx + qvdyBz,

m
dvdy

dt
+ m

vdy

τ
= qEy − qvdxBz,

m
dvdz

dt
+ m

vdz

τ
= qEz.
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Now we know that current can only flow in thex direction, sovdy =
vdz = 0, and so in a steady state

m
vdx

τ
= qEx,

0 = qEy − qvdxBz,

0 = qEz.
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m
vdx

τ
= qEx,

0 = qEy − qvdxBz,

0 = qEz.

The first equation is one we have seen before:

vdx =
qτ

m
Ex,

giving the current along the bar.
The third equation states that there is no electric field in thez direc-
tion.
The second equation states that an electric field is set up in they
direction:

Ey = vdxBz.

Physically what happens is that the charges are accelerated in they
direction by the magnetic field, and pile up on the edges of the bar
until they produce enough of an electric field to oppose the effect of
the magnetic field.
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We know that the current density Jx in the x direction is

Jx = nqvdx,

so
Ey =

JxBz

nq
,

and we define the Hall coefficient as

RH =
Ey

JxBz
.

For a free electron metal with n electrons per volume, then,RH is
negative,

RH = − 1

ne
.

Note that measuring Hall effects in metals isdifficult : even with high
current density (106 Am−2 and magnetic fields of order1 T we have
to measure fields

Ey =
106 × 1

6× 1028 × 1.6× 10−19
= 0.0001 V m−1,

or a potential difference of less than1 µV on a typically-sized sample.
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Metal Valence Rtheor
H /R

exp
H

Li 1 0.8
Na 1 1.2
K 1 1.1
Rb 1 1.0
Cs 1 0.9
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Metal Valence Rtheor
H /R

exp
H

Li 1 0.8
Na 1 1.2
K 1 1.1
Rb 1 1.0
Cs 1 0.9
Cu 1 1.5

Ag 1 1.3
Au 1 1.5
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Metal Valence Rtheor
H /R

exp
H

Li 1 0.8
Na 1 1.2
K 1 1.1
Rb 1 1.0
Cs 1 0.9
Cu 1 1.5

Ag 1 1.3
Au 1 1.5
Be 2 -0.2

Cd 2 -1.2
Zn 3 -0.8
Al 3 -0.3

Alkali metals OK, noble metals numerically incorrect, higher-valent
metalswrong sign. Major problem for free-electron theory. In addi-
tion, RH depends onB and T .
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6.9 Free electron approximation – final comments

We have still not explained how we can justify the assumption that
electrons, charged particles, do not interact with one another. There
are two effects – electrostatic screening and the exclusion principle.
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6.9.1 Screening

If the electrons are free to move, they arrange themselves so as to
make the metal locally neutral – but if they try to pack together more
densely this will increase their energy becauseEF, the energy relative
to the local potential, increases withn = Ne/V . As a result, the
electrostatic potential round a point chargeq in a free electron gas is
not

V0(r) =
q

4πε0r
,

but

V(r) =
qe−r/λ

4πε0r
,

a screened Coulomb potential, with

λ =

√
2ε0EF

3e2n
≈ 6× 10−11 m

for our usual set of parameters, so that electric fields inside a metal
are screened out within a few interatomic spacings.
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6.9.2 Electron-electron scattering

At absolute zero, scatteringcannot occur, because of the exclusion
principle:
The two electrons are initially both in occupied states inside the Fermi
surface.
To conserve energy and momentum, either both final states lie inside
the Fermi surface – but those states are all occupied – or one lies
outside – but then the other lies inside.
Scattering is forbidden atT = 0.
At finite T there is a layer of partly occupied states nearEF, amount-
ing to a fraction about kBT/EF of the electrons, giving weak scatter-
ing with probability ∝ T 2.
See contribution to electrical resistivity∝ T 2 in very pure metals at
very low T .
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6.9.3 Binding energy of metals

The terms in the energy are:

• Electronic kinetic energy (reduced by allowing them to be delo-
calised)

• Attraction of electrons to ion cores (less than in free atoms as elec-
trons are further from nuclei)

•Mutual repulsion of ion cores (screened by the free electron gas)

• Electron-electron repulsion (reduced by spreading out electrons)

• Quantum mechanical exchange potential between electrons

• Correlation energy (beyond single-electron wave-functions)

Balance of effects – typically a few eV per atom.
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