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7 Electrons in Periodic Structures

So far we havecompletelyignored the details of the potential seen by
the electrons.

The key point is that this is aperiodicpotential. Two consequences:
• restricts the form of the wavefunction;

• suggests Fourier analysis might be useful.
2

7.1 Bloch’s theorem

The Schrödinger equation is

− ~2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r),

with
V (r + R) = V (r)

whereR is a lattice vector. Also, the probability density for the elec-
trons must be a periodic function, so that it is the same in every unit
cell, so

|ψ(r + R)|2 = |ψ(r)|2

from which it follows that ψ only varies by a phase factor from cell
to cell:

ψ(r + R) = eiφψ(r).
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Take a one-dimensional example: if the lattice spacing isa

ψ(x + a) = eiφψ(x),

so
ψ(x +Na) = eiNφψ(x).

But if we impose periodic boundary conditions for a system withN
unit cells

ψ(x +Na) = eiNφψ(x) = ψ(x),

so
φ =

2nπ

N
,

wheren is an integer. This corresponds to

φ = ka,

where
k =

2nπ

Na
is one of the allowed wavevectors in the system of lengthNa.
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Now write the wavefunction in the form

ψk(x) = uk(x)eikx,

which satisfies
ψk(x + a) = eiφψk(x)

if
u(x + a) = u(x).

In other words, we haveBloch’s theorem: the wavefunction for an
electron in a periodic potential can be written as a phase factoreikx

times a function with the same periodicity as the potential.

5

In 3D:
ψk(r) = eik.ruk(r).

This gives the sort of wave we sketched before:

a periodic function modulatedby a travelling wave.
The wave-vector,k, is significant whether we have free electrons (uk(r) =
constant) or not.
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7.2 The Nearly Free Electron model

7.2.1 Basic ideas

In one dimension, consider the two free electron wavefunctions

ψ+(x) = L−1/2eiπx/a and ψ−(x) = L−1/2e−iπx/a

where theL−1/2 normalizes over the length of the crystal,L: these
both give constant electron densities1/L. But consider the combina-
tions:

ψe(x) =
1√
2
(ψ+(x) + ψ−(x)) =

√
2

L
cos(πx/a))

ψo(x) =
1√
2
(ψ+(x) − ψ−(x)) =

√
2

L
sin(πx/a)).

The new states are standing waves, not travelling waves.
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See what the corresponding charge densities are like:

It is clear that the even function has more charge density near the
nuclei than the odd function, so we expect it to have lower energy.
The crystal potential has split the degeneracy of the states withk =
−π/a and k = π/a – there is anenergy gapbetween them.
As (π/a) − (−π/a) = 2π/a = G, a reciprocal lattice vector, we can
imagine a wave withk = π/a being Bragg reflected by interacting
with the potential to give a wave withk = −π/a.
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7.2.2 Perturbation theory

The idea of perturbation theory is to start with the solution to a prob-
lem, such as the free electron model, and assume that the difference
between that model and the real problem (in our case, the periodic
potential) is in some sense small.
That is, given a solutionψ(0) to the free electron Hamiltonian H(0)

with energyE(0), assume that the real hamiltonian isH = H(0)+λH′,
for some small parameterλ, and that the energy and the wavefunc-
tion may be written

ψ = ψ(0) + λψ(1) + λ2ψ(2) + ...

and
E = E(0) + λE(1) + λ2E(2) + ...

so that

(H(0) + λH′)(ψ(0) + λψ(1) + λ2ψ(2) + ...) = (E(0) + λE(1) + λ2E(2) + ...)

× (ψ(0) + λψ(1) + λ2ψ(2) + ...).
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Expanding, and collecting the powers ofλ, we find theλ-independent
term

H(0)ψ(0) = E(0)ψ(0),

our original equation. The terms linear in λ give

H(0)ψ(1) + H′ψ(0) = E(0)ψ(1) + E(1)ψ(0).
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If we multiply through by ψ(0) and integrate, using the notation∫
φ(x)Hξ(x)dx = 〈φ|H|ξ〉,

we find

〈ψ(0)|H(0)|ψ(1)〉 + 〈ψ(0)|H′|ψ(0)〉 = 〈ψ(0)|E(0)|ψ(1)〉 + 〈ψ(0)|E(1)|ψ(0)〉,
but

H(0)ψ(0) = E(0)ψ(0)

means that (because the Hamiltonian is Hermitian) the first term

〈ψ(0)|H(0)|ψ(1)〉 = 〈ψ(1)|H(0)|ψ(0)〉∗ = E(0)〈ψ(0)|ψ(1)〉
so

E(1) = 〈ψ(0)|H′|ψ(0)〉,
assuming normalised wavefunctions. This is first order perturbation
theory.
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7.2.3 Fourier Analysis

The one-dimensional periodic potentialV (x) may be expanded as a
Fourier series. As usual, for a function with perioda we expand in
exponentials of2nπx/a. But 2π/a is a primitive reciprocal lattice
vector. Generalizing to three dimensions:

V (r) =
∑
G

VGe
iG.r.
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7.2.4 The Energy Gap

In one dimension, the periodic potential is

V (x) =
∑
n

(Vne
2πinx/a + V−ne−2πinx/a),

and if we assumeV is symmetrical aboutx = 0 this is

V (x) = 2
∑
n

Vn cos(2πnx/a).

Now, using perturbation theory, the energy difference between the
sin and cos functions will be

Eo − Ee =

∫ L

0
2
∑
n

Vn cos(2πnx/a)
2

L
(sin2(πx/a) − cos2(πx/a))dx

= − 4

L

∑
n

Vn

∫ L

0
cos(2πnx/a) cos(2πx/a)dx

and we know that only then = 1 term in the integral will survive,
integrating up to L/2, so

Eo − Ee = −2V1.
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The states atk = π/a are separated by an amount equal to twice
the lowest Fourier component of the potential.Note: strictly speak-
ing, we should be using degenerate perturbation theory, but we have
side-stepped this by ’spotting’ the correct combinations of degener-
ate states (thecos and sin functions).
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7.3 An exactly-soluble model

We know from second-year quantum mechanics that square well po-
tentials are quite easy to deal with. The Kronig-Penney model is
based on this.

For details of the calculation, see for example KittelIntroduction to
Solid State Physics.
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We can seen the gaps in the energy spectrum – regions of energy in
which there are no allowed states.
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The free electron approximation remains a good approximation well
away from the edges of the Brillouin zone – only wave-vectors close to
a multiple of π/a are mixed together and have their energies altered
by the periodic potential.
Translational symmetry is not essential for producing a band gap –
amorphous solids also have band gaps.
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