Solid State Physics

TIGHT BINDING MODEL Lecture 20

A.H. Harker *Physics and Astronomy*

UCL

7.6 The tight-binding model

7.6.1 Overview

For materials which are formed from closed-shell atoms or ions, or even covalent solids, the free electron model seems inappropriate. In the tight-binding model, we imagine how the wavefunctions of atoms or ions will interact as we bring them together. For example, take two hydrogen atoms, A and B, and consider the states $\psi_A\pm\psi_B$.

The symmetric (+) form has more screening charge between the nuclei, and has lower energy.

When more atoms are brought together, the degeneracies are further split - to form bands ranging from fully bonding to fully antibonding. Different orbitals can lead to band overlap.

7.6.2 Tight-binding theory

Consider an element with one atom per unit cell, and suppose that each atom has only one valence orbital, $\phi(\mathbf{r})$. Then we can make a wavefunction of Bloch form by forming

$$\psi_{\mathbf{k}}(\mathbf{r}) = N^{-1/2} \sum_{m} \exp(i\mathbf{k} \cdot \mathbf{R}_{m}) \phi(\mathbf{r} - \mathbf{R}_{m}).$$

Confirm that this is a Bloch function. If ${\bf T}$ is a translation vector:

$$\psi_{\mathbf{k}}(\mathbf{r} + \mathbf{T}) = N^{-1/2} \sum_{m} \exp(i\mathbf{k} \cdot \mathbf{R}_{m}) \phi(\mathbf{r} - \mathbf{R}_{m} + \mathbf{T})$$
$$= N^{-1/2} \exp(i\mathbf{k} \cdot \mathbf{T}) \sum_{m} \exp(i\mathbf{k} \cdot (\mathbf{R}_{m} - \mathbf{T})) \phi(\mathbf{r} - (\mathbf{R}_{m} - \mathbf{T}))$$
$$= \exp(i\mathbf{k} \cdot \mathbf{T}) \psi_{\mathbf{k}}(\mathbf{r})$$

because if \mathbf{R}_m is a lattice vector, so is $\mathbf{R}_m - \mathbf{T}$.

Find the expectation energy of the Hamiltonian:

$$\langle \mathbf{k} | \mathcal{H} | \mathbf{k} \rangle = N^{-1} \sum_{m} \sum_{n} \exp(i\mathbf{k} \cdot (\mathbf{R}_n - \mathbf{R}_m)) \langle \phi_m | \mathcal{H} | \phi_n \rangle$$

where $\phi_m = \phi(\mathbf{r} - \mathbf{R}_m)$. Now $\langle \phi_m | \mathcal{H} | \phi_n \rangle$ will be large if n and m are the same atomic site, or nearest neighbours, but will decrease rapidly with separation. Write

$$\langle \phi_n | \mathcal{H} | \phi_n \rangle = -\alpha,$$

 $\langle \phi_m | \mathcal{H} | \phi_n \rangle = -\gamma$ if *n* and *m* are nearest neighbours,
 $\langle \phi_m | \mathcal{H} | \phi_n \rangle = 0$ otherwise.

Then

$$E_{\mathbf{k}} = \langle \mathbf{k} | \mathcal{H} | \mathbf{k} \rangle = -\alpha - \gamma \sum_{n} \exp(i\mathbf{k} \cdot \mathbf{R}_{n}),$$

where the sum is over nearest neighbours only, and \mathbf{R}_n is a vector joining an atom to its nearest neighbours. For example, in two-dimensional square lattice we have

$$\{\mathbf{R}_n\} = \{(a, 0), (-a, 0), (0, a), (0, -a)\}$$

so that if $\mathbf{k} = (k_x, k_y)$
 $E_{\mathbf{k}} = -\alpha - 2\gamma(\cos(k_x a) + \cos(k_y a)).$

Clearly, as \cos ranges between -1 and $1 E_k$ ranges between $-\alpha - 4\gamma$ and $-\alpha + 4\gamma$, giving a band width of 8γ . Near k = 0 we can expand the \cos functions as

$$\cos\theta \approx 1 - \frac{1}{2}\theta^2,$$

SO

$$E_{\mathbf{k}} \approx -\alpha - 2\gamma(1 - \frac{1}{2}k_x^2a^2 + 1 - \frac{1}{2}k_y^2a^2)$$

= -\alpha - 4\gamma + \gamma(k_x^2 + k_y^2)a^2

which is free-electron-like, giving circular constant-energy surfaces near the centre of the Brillouin zone. If both k_x and k_y are close to π/a , write

$$k_x = \frac{\pi}{a} - \delta_x \quad k_y = \frac{\pi}{a} - \delta_y,$$

so that, remembering

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b),$$

we have

$$E_{\mathbf{k}} = -\alpha - 2\gamma(\cos(\pi - \delta_x a) + \cos(\pi - \delta_y a))$$

= $-\alpha - 2\gamma(\cos(\pi)\cos(\delta_x a) - \sin(\pi)\sin(\delta_x a)$
 $+ \cos(\pi)\cos(\delta_y a) - \sin(\pi)\sin(\delta_y a))$
= $-\alpha + 2\gamma(\cos(\delta_x a) + \cos(\delta_y a))$
= $-\alpha + 4\gamma - \gamma(\delta_x^2 + \delta_y^2)a^2$

giving circular constant-energy surfaces near the zone corners too. Finally, in the middle of the band

$$\cos(k_x a) + \cos(k_y a) = 0,$$

the solutions to which are of the form

$$k_x a = \pi - k_y a,$$

or straight lines.

Finally, then, we have the constant energy surfaces for this tightbinding model.

7.6.3 Comments on tight binding theory

- Note that band width depends on two-centre integrals (γ): for transition metals, this leads to narrow d-bands and wide s-bands.
- Near the top and bottom of bands, we have quadratic dependence on k.

A real band structure.

