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8 Electrons and Holes

8.1 Equations of motion

In one dimension, an electron with wave-vector k has group velocity

v =
dω

dk
=

1

~
dE

dk
. (1)

If an electric field E acts on the electron, then in time δt it will do
work

δE = force times distance = −eEv δt. (2)
But

δE =
dE

dk
δk = ~v δk, (3)

so, comparing eq 2 with 3 we have

δk = −eE
~

δt,

or
~
dk

dt
= −eE .

In terms of force, F ,
~
dk

dt
= F . (4)

3Generalising to three dimensions:

v =
1

~
∇kE,

where
∇k = î

d

dkx
+ ĵ

d

dky
+ k̂

d

dkz
,

and
~
dk

dt
= F .

Similarly, if there is a magnetic field acting,

~
dk

dt
= −ev × B,

or
dk

dt
= − e

~2
(∇kE)× B.

Remember that as k moves in a direction perpendicular to the gra-
dient of energy with respect to k, the electron stays on a surface of
constant energy in k-space.
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8.2 Effective mass

We saw in Lecture 20 that the energy near the bottom of a tight bind-
ing band could be written as

E(k) ≈ E0 + A|k|2,
and near the top of the band (the corner of the Brillouin zone in our
two-dimensional example) as

E(k) ≈ E1 −B|kmax − k|2,
kmax being the k value where the energy was a maximum. We can
see similar behaviour in more complicated band structures. For ex-
ample, Germanium:
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We call the lower set of states, fully occupied at T = 0, the valence
6

band, and the upper set, empty at T = 0, the conduction band.

In a region close to the maxima and minima, a parabolic approxima-
tion can be accurate.

7From equation 1
v =

dω

dk
=

1

~
dE

dk
, (5)

differentiating with respect to time

dv

dt
=

1

~
d2E

dkdt
=

1

~
d2E

dk2

dk

dt
. (6)

But from equation 4
~
dk

dt
= F , (7)

so
dv

dt
=

1

~2

d2E

dk2
F . (8)

But from Newton’s equation we expect
dv

dt
=

1

m
F , (9)

which leads us to define an effective mass
1

m∗ =
1

~2

d2E

dk2
.

That is
• the dynamics of electrons is modified by the crystal potential;
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• the effective mass depends on the curvature of the bands;
• flat bands (in tight-binding, small overlap matrix elements, e.g.

d-bands or f-bands) have large effective masses;
• near the bottom of a band, m∗ is positive, near the top of a band,

m∗ is negative.
In three dimensions, constant energy surfaces are not necessarily
spherical, and the effective mass is a tensor:(

1

m∗

)
ij

=
1

~2

d2E

dkidkj
.
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8.2.1 Typical effective masses for semiconductors

Note that the top of the valence band is often degenerate, with heavy
and light holes and a split-off hole band arising from spin-orbit cou-
pling.

11Mass relative to free electron
Electron Heavy hole Light hole Split-off hole ∆/eV

Si 0.19-0.92 0.52 0.16
Ge 0.082-1.59 0.34 0.043 - 0.29
InSb 0.015 0.39 0.021 0.11 0.82
InAs 0.026 0.41 0.025 0.08 0.43
InP 0.073 0.4 0.078 0.15 0.11
GaSb 0.047 0.3 0.06 0.14 0.80
GaAs 0.066 0.5 0.082 0.17 0.34

8.3 Electrons and holes

We have discussed (in lecture 20) a full band (a full Brillouin zone)
in terms of Bragg reflection, and shown that it does not respond to
electric fields to produce an electric current. We can use our tight
binding model to show this: in one dimension

Ek = −α− 2γ cos(ka),

so the electron velocity is

v =
2γa

~
sin(ka).
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(Note that the effective mass is

m∗ =
~2

2γa2 cos(ka)
,

which is negative near the top of the band, k = ±π/a.) It is clear
that if we integrate v over a Brillouin zone (−π/a ≤ k ≤ π/a) we are
integrating sin over a period, and we get zero. Even if the electrons
drift under the influence of an electric field, there as many electrons
at the top of the band moving against the field as there are at the top
of the band moving with the field. But if the band is not full, we can
have a nett current. If we have somehow managed to excite a few
electrons from the valence bands into the conduction bands, leaving
a few holes in the valence bands, it may be easier to focus on the
behaviour of the holes.

8.3.1 Hole wavevector

The total k of a full band is zero: if we remove an electron with
wavevector ke the total k of the band is

kh = 0− ke = −ke.

138.3.2 Hole energy

Take the energy zero to be the top of the valence band. The lower the
electron energy, the more energy it takes to remove it: thus

Eh(ke) = −Ee(ke),

but bands are usually symmetric,
E(k) = E(−k)

so
Eh(kh) = Eh(−kh) = −Ee(ke).

8.3.3 Hole velocity

vh =
1

~
∇kh

Eh,

but
kh = −ke

so
∇kh

= −∇ke

and so
vh = −1

~
∇ke

(−Ee) = ve.
14

The group velocity of the hole is the same as that of the electron.

8.3.4 Hole effective mass

The curvature of E is just the negative of the curvature of −E, so

m∗
h = −m∗

e.

Note that this has the pleasant effect that if the electron effective mass
is negative, as it is at the top of the band, the equivalent hole has a
positive effective mass.

8.3.5 Hole dynamics

We know that
~
dke

dt
= −e(E + ve × B),

so substituting kh = −ke and vh = ve gives

~
dkh

dt
= e(E + vh × B),

or exactly the equation of motion for a particle of positive charge. Un-
der an electric field, electrons and holes acquire drift velocities in

15opposite directions, but both give electric current in the direction of
the field.
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8.3.6 Experimental

Under a magnetic field B, electrons move in helical paths (orbits
around the field direction, uniform motion parallel to B), with an-
gular frequency

ωc =
eB
m∗,

the cyclotron frequency. Electrons can absorb energy from an elec-
tromagnetic field of the appropriate frequency – cyclotron resonance
– this is how effective masses can be measured.

8.3.7 Mobility and conductivity

We define mobilities for electrons and holes in the relaxation time
approximation as

µe =
eτ

m∗
e
, µh =

eτ

m∗
h

and then the total current is the sum of electron and hole currents,
J = −eneve + enhvh,

so the conductivity is
σ = neeµe + nheµh,
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or

σ = ne
e2τ

m∗
e

+ nh
e2τ

m∗
h

.

Note that we have assumed equal relaxation times, τ , for electrons
and holes – this is not necessarily true.
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