SEMICONDUCTORS - I
 Lecture 22

A.H. Harker
Physics and Astronomy
UCL

9 Physics of Semiconductors

9.1 Creating free carriers

At absolute zero, a pure semiconductor has a full valence band and an empty conduction band - there are no free carriers. Create free carriers by:

- absorbing photons
- thermal excitation
- doping with impurities

9.2 Photon absorption

Photons with energy greater than the band gap E_{g} can excite an electron, creating a hole in the valence band and an electron in the conduction band.

Note that energy and crystal momentum must be conserved, and a phonon may be emitted or absorbed. In terms of initial electron energy and momentum E and $\hbar k$, final electron state $\left(E^{\prime}, k^{\prime}\right)$, photon energy and momentum $\hbar \Omega$ and $\hbar Q$, and phonon energy and momentum $\hbar \omega$ and $\hbar q$:

$$
E^{\prime}=E+\hbar \Omega \pm \hbar \omega
$$

and

$$
k^{\prime}=k+Q \pm q
$$

Note that if the photon energy is about $1 \mathbf{e V}$ its wavelength is about $1.2 \mu \mathrm{~m}$, so its wavevector is $5.1 \times 10^{6} \mathrm{~m}^{-1}$. The side of the Brillouin zone is $2 \pi / a$, which is typically of order $10^{10} \mathrm{~m}^{-1}$. On the scale of the reciprocal lattice, then, the photon wavevector is essentially zero-a photon transition is vertical.

9.3 Thermal excitation

We can find the number of electrons in the conduction band by taking the density of states in the conduction band, $g_{\mathrm{c}}(E)$, multiplying it by the probability that the state is occupied (the Fermi function), and integrating. If the energy of the bottom of the conduction band is E_{C} the number of electrons is

$$
\begin{equation*}
N_{\mathrm{e}}(T)=\int_{E_{\mathrm{c}}}^{\infty} \frac{g_{\mathrm{c}}(E) \mathrm{d} E}{\exp \left((E-\mu) /\left(k_{\mathrm{B}} T\right)\right)+1} . \tag{1}
\end{equation*}
$$

Note that

- N_{e} will depend on the temperature
- we need to know the chemical potential, μ.

The number of holes depends on the probability that an electron state is unoccupied, but

$$
\begin{aligned}
1-\frac{1}{\exp \left((E-\mu) /\left(k_{\mathrm{B}} T\right)\right)+1} & =\frac{\exp \left((E-\mu) /\left(k_{\mathrm{B}} T\right)\right)}{\exp \left((E-\mu) /\left(k_{\mathrm{B}} T\right)\right)+1} \\
& =\frac{1}{\exp \left((\mu-E) /\left(k_{\mathrm{B}} T\right)\right)+1},
\end{aligned}
$$

so the number of holes is

$$
\begin{equation*}
N_{\mathrm{h}}(T)=\int_{-\infty}^{E_{\mathrm{v}}} \frac{g_{\mathrm{v}}(E) \mathrm{d} E}{\exp \left((\mu-E) /\left(k_{\mathrm{B}} T\right)\right)+1} \tag{2}
\end{equation*}
$$

where E_{V} is the energy of the top of the valence band and $g_{\mathrm{V}}(E)$ is the density of states in the valence band.

Equations 1 and 2 can be simplified if the numbers of electrons and holes are small. If

$$
\frac{1}{\exp \left((E-\mu) /\left(k_{\mathrm{B}} T\right)\right)+1} \ll 1
$$

it follows that the exponential is large, so that

$$
\frac{1}{\exp \left((E-\mu) /\left(k_{\mathrm{B}} T\right)\right)+1} \approx e^{(\mu-E) /\left(k_{\mathrm{B}} T\right)}
$$

which is true if

$$
E-\mu \gg k_{\mathrm{B}} T
$$

In the conduction band, $E \geq E_{\mathrm{c}}$, so the condition is

$$
\begin{equation*}
E_{\mathrm{c}}-\mu \gg k_{\mathrm{B}} T \tag{3}
\end{equation*}
$$

Similarly, provided

$$
\begin{equation*}
\mu-E_{\mathrm{v}} \gg k_{\mathrm{B}} T \tag{4}
\end{equation*}
$$

we can write in the valence band

$$
\frac{1}{\exp \left((\mu-E) /\left(k_{\mathrm{B}} T\right)\right)+1} \approx e^{(E-\mu) /\left(k_{\mathrm{B}} T\right)}
$$

This low carrier density is the nondegenerate case. The other extreme, in which the probability of occupation of a level is close to 1 , is the degenerate case, typified by the occupied states in a metal.

9.3.1 Law of mass action

In the nondegenerate limit,

$$
\begin{align*}
N_{\mathrm{e}}(T) & \approx \int_{E_{\mathrm{c}}}^{\infty} g_{\mathrm{c}}(E) e^{(\mu-E) /\left(k_{\mathrm{B}} T\right)} \mathrm{d} E \\
& =e^{\left(\mu-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} \int_{E_{\mathrm{c}}}^{\infty} g_{\mathrm{c}}(E) e^{-\left(E-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} \mathrm{d} E \\
& =e^{\left(\mu-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} N_{\mathrm{c}}(T) \tag{5}
\end{align*}
$$

Similarly,

$$
\begin{aligned}
N_{\mathrm{h}}(T) & \approx \int_{-\infty}^{E_{\mathrm{V}}} g_{\mathrm{v}}(E) e^{(E-\mu) /\left(k_{\mathrm{B}} T\right)} \mathrm{d} E \\
& =e^{\left(E_{\mathrm{c}}-\mu\right) /\left(k_{\mathrm{B}} T\right)} \int_{-\infty}^{E_{\mathrm{V}}} g_{\mathrm{v}}(E) e^{-\left(E_{\mathrm{v}}-E\right) /\left(k_{\mathrm{B}} T\right)} \mathrm{d} E \\
& =e^{\left(E_{\mathrm{v}}-\mu\right) /\left(k_{\mathrm{B}} T\right)} N_{\mathrm{V}}(T)
\end{aligned}
$$

$N_{\mathrm{C}}(T)$ and $N_{\mathrm{v}}(T)$ are only slowly-varying functions of T. We still cannot determine the individual carrier concentrations without knowing μ, but if we take the product

$$
\begin{aligned}
N_{\mathrm{e}}(T) N_{\mathrm{h}}(T) & =e^{\left(\mu-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} N_{\mathrm{c}}(T) e^{\left(E_{\mathrm{v}}-\mu\right) /\left(k_{\mathrm{B}} T\right)} N_{\mathrm{v}}(T) \\
& =e^{\left(E_{\mathrm{v}}-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} N_{\mathrm{c}}(T) N_{\mathrm{V}}(T) \\
& =e^{-E_{\mathrm{g}} /\left(k_{\mathrm{B}} T\right)} N_{\mathrm{c}}(T) N_{\mathrm{V}}(T)
\end{aligned}
$$

the result is independent of μ. This is the law of mass action: if we know the number of one of the carriers, we can find that of the other.

9.4 Parabolic bands

We saw that, near the top and bottom of bands, a parabolic approximation was appropriate, and we can combine this with the effective mass to write, for conduction electrons,

$$
E(\mathbf{k})=E_{\mathrm{c}}+\frac{\hbar^{2}\left|\mathbf{k}-\mathbf{k}_{0}\right|^{2}}{2 m_{\mathrm{e}}^{*}}
$$

and in the valence band

$$
E(\mathbf{k})=E_{\mathrm{V}}-\frac{\hbar^{2}\left|\mathbf{k}-\mathbf{k}_{0}\right|^{2}}{2 m_{\mathrm{h}}^{*}}
$$

Using, as usual,

$$
g(k) \mathrm{d} k=2\left(\frac{L}{2 \pi}\right)^{3} 4 \pi k^{2} \mathrm{~d} k
$$

and

$$
\frac{\mathrm{d} E}{\mathrm{~d} k}=\frac{\hbar^{2} k}{m^{*}}
$$

and noting that the same result is valid whether we expand about $k=0$ or $k=k_{0}$, for the conduction band

$$
\begin{aligned}
g_{\mathrm{c}}(E) & =\frac{L^{3}}{\pi^{2}} \frac{m_{\mathrm{e}}^{*} k}{\hbar^{2}} \\
& =\frac{V}{\pi^{2}} \frac{m_{\mathrm{e}}^{*}}{\hbar^{2}} \sqrt{\frac{2 m_{\mathrm{e}}^{*}\left(E-E_{\mathrm{c}}\right)}{\hbar^{2}}} \\
& =\frac{V 2^{1 / 2}\left(m_{\mathrm{e}}^{*}\right)^{3 / 2}}{\hbar^{3} \pi^{2}} \sqrt{E-E_{\mathrm{c}}}
\end{aligned}
$$

Similarly, for the valence band,

$$
g_{\mathrm{v}}(E)=\frac{V 2^{1 / 2}\left(m_{\mathrm{h}}^{*}\right)^{3 / 2}}{\hbar^{3} \pi^{2}} \sqrt{E_{\mathrm{v}}-E}
$$

Now we can evaluate the integrals

$$
\begin{aligned}
N_{\mathrm{c}}(T) & =\int_{E_{\mathrm{c}}}^{\infty} g_{\mathrm{c}}(E) e^{-\left(E-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} \mathrm{d} E \\
& =\frac{V 2^{1 / 2}\left(m_{\mathrm{e}}^{*}\right)^{3 / 2}}{\hbar^{3} \pi^{2}} \int_{E_{\mathrm{c}}}^{\infty} \sqrt{E-E_{\mathrm{c}}} e^{-\left(E-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)} \mathrm{d} E
\end{aligned}
$$

Substitute $x=\left(E-E_{\mathrm{C}}\right) /\left(k_{\mathrm{B}} T\right)$, to obtain

$$
\begin{align*}
N_{\mathrm{c}}(T) & =\frac{V 2^{1 / 2}\left(m_{\mathrm{e}}^{*} k_{\mathrm{B}} T\right)^{3 / 2}}{\hbar^{3} \pi^{2}} \int_{0}^{\infty} \sqrt{x} e^{-x} \mathrm{~d} x \\
& =\frac{1}{4} V\left(\frac{2 m_{\mathrm{e}}^{*} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2} \tag{6}
\end{align*}
$$

using the standard integral

$$
\int_{0}^{\infty} \sqrt{x} e^{-x} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}
$$

If we set $V=1$, we can work with concentrations of carriers $n_{\mathrm{e}, \mathrm{h}}$ and corresponding values $n_{\mathrm{c}, \mathrm{v}}$. If we put in numbers, we find

$$
n_{\mathrm{c}}(T)=5 \times 10^{21}\left(\frac{m_{e}^{*}}{m_{e}}\right)^{3 / 2} T^{3 / 2}
$$

The expression for the valence band is quite similar:

$$
n_{\mathrm{v}}(T)=\frac{1}{4}\left(\frac{2 m_{\mathrm{h}}^{*} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}
$$

9.5 Intrinsic behaviour

If all (or almost all) the electrons in the conduction band have been excited from the valence band, we have

$$
n_{\mathrm{e}}(T)=n_{\mathrm{h}}(T)=n_{\mathrm{i}}(T)
$$

with

$$
\begin{align*}
n_{\mathrm{i}}(T) & =e^{-E_{\mathrm{g}} /\left(2 k_{\mathrm{B}} T\right)} \sqrt{n_{\mathrm{c}}(T) n_{\mathrm{v}}(T)} \\
& =e^{-E_{\mathrm{g}} /\left(2 k_{\mathrm{B}} T\right)} \frac{1}{4}\left(\frac{2 k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}\left(m_{\mathrm{e}}^{*} m_{\mathrm{h}}^{*}\right)^{3 / 4} \tag{7}\\
& =5 \times 10^{21}\left(\frac{m_{e}^{*} m_{h}^{*}}{m_{e}^{2}}\right)^{3 / 4} T^{3 / 2} e^{-E_{\mathrm{g}} /\left(2 k_{\mathrm{B}} T\right)}
\end{align*}
$$

Now we can find the Fermi energy: if we equate the value for $n_{\mathrm{e}}(T)$ from equations 5 and 6 with that from 7 we find
$e^{-E_{\mathrm{g}} /\left(2 k_{\mathrm{B}} T\right)} \frac{1}{4}\left(\frac{2 k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2}\left(m_{\mathrm{e}}^{*} m_{\mathrm{h}}^{*}\right)^{3 / 4}=\frac{1}{4}\left(\frac{2 m_{\mathrm{e}}^{*} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2} e^{\left(\mu-E_{\mathrm{c}}\right) /\left(k_{\mathrm{B}} T\right)}$,
then

$$
\mu=E_{c}-\frac{1}{2} E_{\mathrm{g}}+\frac{3}{4} k_{\mathrm{B}} T \ln \left(\frac{m_{\mathrm{h}}^{*}}{m_{\mathrm{e}}^{*}}\right) .
$$

Knowing the relationship between $n_{\mathrm{c}, \mathrm{v}}$ and $m_{\mathrm{e}, \mathrm{h}}^{*}$, we also have

$$
\mu=E_{c}-\frac{1}{2} E_{\mathrm{g}}+\frac{1}{2} k_{\mathrm{B}} T \ln \left(\frac{n_{\mathrm{v}}}{n_{\mathrm{c}}}\right) .
$$

- at $T=0, \mu$ lies half-way between the valence and conduction - think of carriers being excited from the chemical potential, not bands
- as T increases, μ will move towards the band with the smaller effective mass (smaller density of states at the band edge)
- as the effective masses are generally of similar magnitude, μ does not move far from mid-gap
- note that
$-E_{\mathrm{G}}$ is typically about 1 eV , which is large compared with $k_{\mathrm{B}} T$ which is $1 / 40 \mathrm{eV}$ at room temperature
$-\ln \left(\frac{m_{\mathrm{p}}^{*}}{m_{\mathrm{e}}^{*}}\right)$ is of order 1
- so $E_{\mathrm{C}}-\mu$ is large compared with $k_{\mathrm{B}} T$
- so we are in the nondegenerate regime
- note that the number of carriers varies as $e^{-E_{\mathrm{g}} /\left(2 k_{\mathrm{B}} T\right)}$, not as

$$
e^{-E_{\mathrm{g}} /\left(k_{\mathrm{B}} T\right)}
$$

