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9 Physics of Semiconductors

9.1 Creating free carriers

At absolute zero, a pure semiconductor has a full valence band and
an empty conduction band – there are nofree carriers. Create free
carriers by:

• absorbing photons

• thermal excitation

• doping with impurities
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9.2 Photon absorption

Photons with energy greater than the band gapEg can excite an elec-
tron, creating a hole in the valence band and an electron in the con-
duction band.
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Note that energy and crystal momentum must be conserved, and a
phonon may be emitted or absorbed. In terms of initial electron en-
ergy and momentumE and ~k, final electron state(E′, k′), photon
energy and momentum~Ω and ~Q, and phonon energy and momen-
tum ~ω and ~q:

E′ = E + ~Ω± ~ω,

and
k′ = k + Q± q.

Note that if the photon energy is about 1 eV its wavelength is about
1.2 µm, so its wavevector is5.1 × 106 m−1. The side of the Brillouin
zone is2π/a, which is typically of order 1010 m−1. On the scale of the
reciprocal lattice, then, the photon wavevector is essentially zero – a
photon transition is vertical.
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9.3 Thermal excitation

We can find the number of electrons in the conduction band by taking
the density of states in the conduction band,gc(E), multiplying it by
the probability that the state is occupied (the Fermi function), and
integrating. If the energy of the bottom of the conduction band isEc

the number of electrons is

Ne(T ) =

∫ ∞

Ec

gc(E)dE

exp((E − µ)/(kBT )) + 1
. (1)

Note that

• Ne will depend on the temperature

• we need to know the chemical potential,µ.
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The number of holes depends on the probability that an electron state
is unoccupied, but

1− 1

exp((E − µ)/(kBT )) + 1
=

exp((E − µ)/(kBT ))

exp((E − µ)/(kBT )) + 1

=
1

exp((µ− E)/(kBT )) + 1
,

so the number of holes is

Nh(T ) =

∫ Ev

−∞

gv(E)dE

exp((µ− E)/(kBT )) + 1
, (2)

whereEv is the energy of the top of the valence band andgv(E) is the
density of states in the valence band.
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Equations 1 and 2 can be simplified if the numbers of electrons and
holes are small. If

1

exp((E − µ)/(kBT )) + 1
<< 1,

it follows that the exponential is large, so that
1

exp((E − µ)/(kBT )) + 1
≈ e(µ−E)/(kBT ),

which is true if
E − µ >> kBT.

In the conduction band,E ≥ Ec, so the condition is

Ec − µ >> kBT. (3)

Similarly, provided
µ− Ev >> kBT. (4)

we can write in the valence band
1

exp((µ− E)/(kBT )) + 1
≈ e(E−µ)/(kBT ).
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This low carrier density is the nondegeneratecase. The other ex-
treme, in which the probability of occupation of a level is close to 1,
is thedegeneratecase, typified by the occupied states in a metal.
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9.3.1 Law of mass action

In the nondegenerate limit,

Ne(T ) ≈
∫ ∞

Ec

gc(E)e(µ−E)/(kBT ) dE

= e(µ−Ec)/(kBT )
∫ ∞

Ec

gc(E)e−(E−Ec)/(kBT ) dE

= e(µ−Ec)/(kBT )Nc(T ). (5)

Similarly,

Nh(T ) ≈
∫ Ev

−∞
gv(E)e(E−µ)/(kBT ) dE

= e(Ec−µ)/(kBT )
∫ Ev

−∞
gv(E)e−(Ev−E)/(kBT ) dE

= e(Ev−µ)/(kBT )Nv(T ).
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Nc(T ) andNv(T ) are only slowly-varying functions ofT . We still can-
not determine the individual carrier concentrations without knowing
µ, but if we take the product

Ne(T )Nh(T ) = e(µ−Ec)/(kBT )Nc(T )e(Ev−µ)/(kBT )Nv(T )

= e(Ev−Ec)/(kBT )Nc(T )Nv(T )

= e−Eg/(kBT )Nc(T )Nv(T ).

the result is independent ofµ. This is the law of mass action: if we
know the number of one of the carriers, we can find that of the other.
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9.4 Parabolic bands

We saw that, near the top and bottom of bands, a parabolic approx-
imation was appropriate, and we can combine this with the effective
mass to write, for conduction electrons,

E(k) = Ec +
~2|k− k0|2

2m∗
e

,

and in the valence band

E(k) = Ev −
~2|k− k0|2

2m∗
h

.
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Using, as usual,

g(k)dk = 2

(
L

2π

)3

4πk2dk

and
dE

dk
=

~2k

m∗
and noting that the same result is valid whether we expand about
k = 0 or k = k0, for the conduction band

gc(E) =
L3

π2

m∗
ek

~2

=
V

π2

m∗
e

~2

√
2m∗

e(E − Ec)

~2

=
V 21/2(m∗

e)
3/2

~3π2

√
E − Ec.

Similarly, for the valence band,

gv(E) =
V 21/2(m∗

h)3/2

~3π2

√
Ev − E.
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Now we can evaluate the integrals

Nc(T ) =

∫ ∞

Ec

gc(E)e−(E−Ec)/(kBT ) dE

=
V 21/2(m∗

e)
3/2

~3π2

∫ ∞

Ec

√
E − Ece

−(E−Ec)/(kBT ) dE.

Substitutex = (E − Ec)/(kBT ), to obtain

Nc(T ) =
V 21/2(m∗

ekBT )3/2

~3π2

∫ ∞

0

√
xe−x dx

=
1

4
V

(
2m∗

ekBT

π~2

)3/2

, (6)

using the standard integral∫ ∞

0

√
xe−x dx =

√
π

2
.
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If we setV = 1, we can work with concentrations of carriersne,h and
corresponding valuesnc,v. If we put in numbers, we find

nc(T ) = 5× 1021
(

m∗
e

me

)3/2

T 3/2.

The expression for the valence band is quite similar:

nv(T ) =
1

4

(
2m∗

hkBT

π~2

)3/2

.
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9.5 Intrinsic behaviour

If all (or almost all) the electrons in the conduction band have been
excited from the valence band, we have

ne(T ) = nh(T ) = ni(T ),

with

ni(T ) = e−Eg/(2kBT )
√

nc(T )nv(T )

= e−Eg/(2kBT )1

4

(
2kBT

π~2

)3/2 (
m∗

em
∗
h

)3/4 (7)

= 5× 1021
(

m∗
em

∗
h

m2
e

)3/4

T 3/2 e−Eg/(2kBT ).
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Now we can find the Fermi energy: if we equate the value forne(T )
from equations5 and 6 with that from 7 we find

e−Eg/(2kBT )1

4

(
2kBT

π~2

)3/2 (
m∗

em
∗
h

)3/4
=

1

4

(
2m∗

ekBT

π~2

)3/2

e(µ−Ec)/(kBT ),

then

µ = Ec −
1

2
Eg +

3

4
kBT ln

(
m∗

h

m∗
e

)
.

Knowing the relationship betweennc,v and m∗
e,h, we also have

µ = Ec −
1

2
Eg +

1

2
kBT ln

(
nv

nc

)
.
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So

• at T = 0, µ lies half-way between the valence and conduction
bands

• as T increases,µ will move towards the band with the smaller
effective mass (smaller density of states at the band edge)

• as the effective masses are generally of similar magnitude,µ does
not move far from mid-gap

• note that

– EG is typically about 1 eV, which is large compared withkBT
which is 1/40 eV at room temperature

– ln
(

m∗
h

m∗
e

)
is of order 1

– soEc − µ is large compared withkBT

– so weare in the nondegenerate regime

• note that the number of carriers varies ase−Eg/(2kBT ), not as

e−Eg/(kBT )
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– think of carriers being excited from the chemical potential, not
from valence to conduction band.
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