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9.7 Carrier concentrations

9.7.1 Overview

Consider the electron density in an n-type semiconductor:

• At very low T , ne ∝ e−(Ec−Ed)/(kBT ) (pinned µ);

• At low T (kBT comparable with impurity binding energy) ne ∝
e−(Ec−Ed)/(2kBT )

• At intermediate T we exhaust all the impurities, but have not
enough thermal energy to excite from the valence band –satu-
ration

• At higher T we havene ∝ e−Eg/(2kBT ).
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Note that ne(T )nh(T ) = e−Eg/(kBT )nc(T )nv(T ) irrespective of doping.
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At room temperatures, nenh ≈ 1038 m−6 for Ge and 1033 m−6 for Si.
So if there is no doping,ne = nh ≈ 3× 1016 m−3 for Si. So to observe
intrinsic behaviour at room temperature, need fewer carriers than
this from impurities, a concentrationof less than one part in1012 of
1013 – unachievable.

4



9.7.2 Detailed results

At low temperatures, in an n-type material, if there are nD donors
per volume, we know that the number of ionized donors will be

n+
D = nD

[
1− 1

exp((ED − µ)/(kBT )) + 1

]
,

i.e. we compute the probability that the donor states will be empty.
If we can assume that both

µ− ED >> kBT

and
Ec − µ >> kBT

we can again use the Boltzmann expressions. But these require that
µ lies between the donor levels and the conduction band, and these
are only a few tens of meV apart, so this is only applicable at lowT .
Then

ne =
√

nDnc(T )e−(Ec−ED)/(2kBT ).
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9.8 Mobility and conductivity

If both electrons and holes are present, both contribute to the electri-
cal conductivity:

σ = neeµe + nheµh.

In a doped material, one carrier type will be present in larger num-
ber at room temperatures – themajority carrier. The other is the
minority carrier. At high T , the material behavesintrinsically, with
roughly equal concentrations of electrons and holes. The main fac-
tors affecting the mobilities are scattering by charged impurities and
phonon scattering. The real temperature dependences are compli-
cated, but one can make rough estimates.

6

9.8.1 Scattering by charged impurities

Assume that a carrier is scattered when its potential energy in the
field of the scatterer is similar to its kinetic energy. The potential
energy, Coulombic, at a distancer

V ∝ 1

r
.

The kinetic energy is thermal energy,
E ∝ T

so we can define an effective radius of the scatterer as

rs ∝
1

T
.

Hence we get a scattering cross-section, and a scattering probability,
pscatt ∝ πr2

s ∝ T−2.

The rate at which the carrier encounters scatterers is proportional to
the carrier velocity

v ∝
√

T ,

so overall
pscatt ∝ T−3/2.
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9.8.2 Scattering by phonons

As in metals, the probability of interacting with a phonon is propor-
tional to the number of phonons, which is proportional toT at room
temperature. But the rate at which the carriers pass through the
crystal is determined by their thermal velocity,

v ∝
√

T ,

so
pscatt ∝ T 3/2.

Note the difference from metals – there the velocity of the carriers
being scattered was the Fermi velocity, essentially independent ofT .
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9.8.3 Overall effect

The graph shows the variation of the two contributions to1/τ , and
as usual

1

τ
=

1

τdef
+

1

τphon
.

So the mobility peaks at intermediate temperatures – typically 100 to
200 K.
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Then, to find the conductivity, we need to factor in the number of
carriers, giving the result in the following graph.
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9.8.4 Hall effect in semiconductors

With more than one carrier type, the Hall coefficient is

RH =
1

|e|
nhµh

2 − neµe
2

(nhµh + neµe)
2
.

For a doped semiconductor, it is possible for the sign of the Hall co-
efficient to vary with T : for example, consider a p-type material with
µe > µh

• at low T , RH > 0

• at high T , intrinsic behaviour givesne = nh, but µe > µh soRH < 0

• temperature dependence of carrier concentration gives exponen-
tial dependence ofRH at high T
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Example: Hall coefficient in InSb.

12



9.8.5 Cyclotron resonance

In stronger magnetic fieldsB, the carriers move in spirals about the
field lines. For holes for example,

m∗
hv

2

r
= Bev,

so that the angular frequencyωc = v/r is

ωc =
eB
m∗

h

.

This is thecyclotron frequency: electromagnetic radiation of that fre-
quency can be absorbed, giving a measurement ofm∗

h. We do not
expect to be able to detect this cyclotron resonance unless the carrier
completes most of an orbit before being scattered,

ωcτ ∼ 1.

This dictates the range of frequency, and hence field, to use. Typically
at room T use infrared, at liquid helium T use microwaves.
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Cyclotron resonance in Si at 24 GHz at 4 K.

Note that we have heavy holes and light holes, but for electrons the
constant energy surfaces are ellipsods, so the effective mass is differ-
ent for different directions. There is a vast array of beautiful experi-
ments which explore details of Fermi surfaces, which we have no time
to explore in this course.
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9.9 Carrier diffusion and recombination

Suppose we have a p-type semiconductor, i.e.

nh >> ne. (1)

Create a local excess of minority carriers (electrons)

• with radiation, when ∆ne = ∆nh automatically, or

• by using a contact, when electrical neutrality will ensure∆ne =
∆nh.

But because of equation1
∆ne

ne0
>>

∆nh

nh0
,

so the change from equilibrium concentration (ne0 or nh0) is much
greater for the minority carriers.
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9.9.1 Recombination

Electrons and holes annihilate, mainly at deep traps or surfaces. The
recombination (annihilation) rate is proportional to the product of
the concentrations:

R′ = cnenh = c(ne0 + ∆ne)(nh0 + ∆nh).

But we know that in equilibrium we have dynamic equilibrium with
thermal generation equal to recombinationcne0nh0, so the recombi-
nation caused by the excess carriers is

R = c(ne0 + ∆ne)(nh0 + ∆nh)− cne0nh0

= cne0nh0

(
∆ne

ne0
+

∆nh

nh0
+

∆nh

nh0

∆ne

ne0

)
= ne0nh0

∆ne

ne0
,

keeping only the largest term. Thus

R = nh0∆ne,

the recombination rate is proportional to the concentration of excess
minority carriers.
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If we write
R = −d∆ne

dt
=

∆ne

τe
,

then
∆ne(t) = ∆ne(0)e−t/τe.
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9.9.2 Diffusion

Suppose we inject excess minority carriers at some point: this will
set up a carrier concentration gradient, and carriers will diffuse. As
they carry charge, this will give an electric current density. For holes

J = −|e|Dh∇nh,

the negative sign accounting for diffusiondown the gradient. Dh is
the diffusion constant. The rate of increase of hole density in a slice
at x in one dimension is

∂

∂x

(
−Dh

∂nh

∂x

)
= −Dh

∂2nh

∂x2
,

which in a steady state is balanced by recombination loss so

Dh
∂2nh

∂x2
=

nh − nh0

τh
.
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This is equivalent to
∂2∆nh

∂x2
=

∆nh

Dhτh
or

∆nh(x) = ∆nh(0)e−x/lh,

where
lh =

√
Dhτh

is called thehole diffusion length. Of course, for electrons there are
exactly similar expressions. Note that the diffusion constant and the
mobility are related by the Einstein relations

µh =
eDh

kBT
µe =

eDe

kBT
.
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