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9.9 Carrier diffusion and recombination

Suppose we have a p-type semiconductor, i.e.

nh >> ne. (1)

Create a local excess of minority carriers (electrons)

• with radiation, when ∆ne = ∆nh automatically, or

• by using a contact, when electrical neutrality will ensure∆ne =
∆nh.

But because of equation1
∆ne

ne0
>>

∆nh

nh0
,

so the change from equilibrium concentration (ne0 or nh0) is much
greater for the minority carriers.
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9.9.1 Recombination

Electrons and holes annihilate, mainly at deep traps or surfaces. The
recombination (annihilation) rate is proportional to the product of
the concentrations:

R′ = cnenh = c(ne0 + ∆ne)(nh0 + ∆nh).

But we know that in equilibrium we have dynamic equilibrium with
thermal generation equal to recombinationcne0nh0, so the recombi-
nation caused by the excess carriers is

R = c(ne0 + ∆ne)(nh0 + ∆nh) − cne0nh0

= cne0nh0

(
∆ne

ne0
+

∆nh

nh0
+

∆nh

nh0

∆ne

ne0

)
= cne0nh0

∆ne

ne0
,

keeping only the largest term. Thus

R = cnh0∆ne,

the recombination rate is proportional to the concentration of excess
minority carriers.
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If we write cnh0 as1/τe,

R = −d∆ne

dt
=

∆ne

τe
,

then
∆ne(t) = ∆ne(0)e−t/τe,

where τe is the electron (minority carrier) recombination time.

4



9.9.2 Diffusion

Suppose we inject excess minority carriers at some point: this will set
up a carrier concentration gradient, and carriers will diffuse. As they
carry charge, this will give an electric current density. For electrons

Je,diff = −(−|e|)De∇ne,

one negative sign accounting for diffusiondown the gradient, the
other being the sign of the carrier charge. De is the diffusion con-
stant. The rate of increase of electron density in a slice atx in one
dimension is

∂

∂x

(
−De

∂ne

∂x

)
= −De

∂2ne

∂x2
,

which in a steady state is balanced by recombination loss so

De
∂2ne

∂x2
=

ne − ne0

τe
.
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This is equivalent to
∂2∆ne

∂x2
=

∆ne

Deτe
or

∆ne(x) = ∆ne(0)e−x/le, (2)

where
le =

√
Deτe

is called theelectron diffusion length. Of course, for holes there are
exactly similar expressions. Note that the diffusion constant and the
mobility are related by the Einstein relations

µh =
eDh

kBT
µe =

eDe

kBT
.
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9.9.3 Electric current

In general, there can be four contributions to electric current in a
semiconductor:

• electron drift: Je,drift = neµe|e|E
• hole drift: Jh,drift = nhµh|e|E
• electron diffusion: Je,diff = |e|De∇ne

• hole diffusion: Jh,diff = −|e|Dh∇nh

Carrier mobilities, m2V−1s−1 at room T
Electrons Holes Electrons Holes

Diamond 0.018 0.012GaAs 0.080 0.003
Si 0.014 0.005GaSb 0.050 0.010
Ge 0.036 0.018PbS 0.006 0.006
InSb 0.300 0.005PbSe 0.010 0.009
InP 0.045 0.001 AlSb 0.009 0.004
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9.10 Heterojunctions

Most important semiconductor devices depend on having differently-
doped materials in contact. In practice, these are made by ion im-
plantation or diffusion, giving relatively smooth dopant concentra-
tion variations – but we assume sharp boundaries.
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Consider an n-type and a p-type material.

When they are separated, their chemical potentials are roughlyEg

apart.
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When they are in contact and in equilibrium the chemical potential
must be constant throughout.
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This can happen if the p-type region becomes negative, raising the
potential for electrons, and the n-type becomes positive.

We assume this happens by ionising the impurities: the electrons re-
leased from donors in a region near the interface go to acceptors near
the interface.
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Suppose a region of thicknessxD with donor density nD and a region
of thicknessxA with acceptor densitynA are ionised. The ionisation is
assumed to be total within thisdepletion zone, where there are prac-
tically no free carriers. In a region with charge density ρ Poisson’s
equation tells us the electric field is given by

dE
dx

=
ρ

ε0εr
.

If the field is zero outside the depletion zone,E = 0 at x = −xD, and
in the depletion zone in the n-type materialρ = |e|nD, so

E =
nD|e|
ε0εr

(x + xD).

As the potentialV is related to the field byE = −dV/dx we have

V = V (−xD) − nD|e|
2ε0εr

(x + xD)2.

Similarly in the p-type depletion zone

E =
nA|e|
ε0εr

(xA − x),
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and we have a total change in potential across the depletion region

∆V =
|e|

2ε0εr

(
nDx2

D + nAx2
A

)
.

This must give a voltage equal to the band gap. PuttingnDxD = nAxA
(which ensures continuity ofV at the interface) we find

xD =

√
2ε0εr
nD|e|

V

(
nA

nA + nD

)
,

giving, with a band gap of0.5 V and dopant concentrations of about
1023 m−3, depletion layer widths of about1 µm.
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The charge densities, fields, and potential are shown below.
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Here is the relationship between the potential through the junction
and the band structure.
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In equilibrium, we can assume there are practically no electrons on
the p-type side. On the n-type side the fraction of the electrons with
enough energy to move to the p-type side will vary asexp(−Eg/kBT )
(those with energyEg above the bottom of the conduction band.)

Once they are in the p-type material, these diffuse a distancele before
they recombine.
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in equilibrium, these are balanced by a flow of thermally-generated
electrons in the p-type region, which roll down the potential energy
surface into the n-type region.

But forward bias the junction, raising the energy of the electrons
in the n-type region by eV, and the number passing from n to p is
increased by a factorexp(eV/kBT ).
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Under reverse bias, the number of electrons flowing from n to p is re-
duced, and as there are hardly any electrons in the p-type the reverse
current is very low.
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Thus the number of electrons very close to the junction on the p-type
side will be

ne0p + Ane0p

[
eeV/kBT − 1

]
,

where A is a diffusion parameter from p to n. The extra concentra-
tion of electrons on the p side varies as (equation2

∆ne(x) = ∆ne(0)e−x/le, (3)

and the current is given by the product of the diffusion constant and
the concentration gradient, so for forward bias

J =
eDeAne0p

le

[
eeV/kBT − 1

]
,

and for reverse bias

J =
eDeAne0p

le

[
1 − eeV/kBT

]
.

Of course, the electrons crossing the barrier will be supplied by a
drift current in the n-type material. There will be a hole diffusion
current in the n-type material too.
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The p-n junction is a rectifier.
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