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10.5.2 General/ ionic paramagnetism This is Curie’s Law, often written
An atomic angular momentum J, made of spinS and orbital angu- X = %

lar momentum quantum number L, will have a magnetic moment
gjupJ, where g 5 is the Landé g-factor
3 S(S+1)—L(L+1)
gr=5+
2 2J(J +1)
If we write © = g;upB/kgT, the average atomic magnetic moment
will be

Z;{iz_t} mg jupe™*
<M> = 7 .
) __gemt

If we assume that7" is large and/or B is small, we can expand the
exponential, giving

Pierre Curie
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Chromium potassium alum. Experimental results confirm this.
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1/x is proportional to 7', confirming Curie’s law. J=8=%.
Of course, eventually M must saturate, as for the spin-1/2 system. lonic paramagnetic susceptibility:
The larger J the slower the saturation. A full treatment results in the e Positive

Brillouin function , B;(g;upJB/kgT) giving the variation of M /M. . -
e Typically 107° to 1073

e Temperature-dependent
e Arises from permanent dipole moments on the atoms
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10.5.3 States of ions in solids We can deduce the magnetic moment per atomup from the suscep-
tibility, and compare with what Hund'’s rules tell us.
lon State Term g./J(J+1) Experimental p

The ions which concern us here are those with part-filled shells, giv-
ing a nett angular momentum.

i i Cet afl5s”pl 2Fy ) 2.54 2.4
= o S+ 22,6 3
H]na Part-filled d shell IB IVB VB VIB VIIB|He] §ég+ ig%% 4IH4 2'22 gg
i Part-filled f shell e 22 ' '
Li| Be| a cdlshe Bl[c/ NJO] F|Ne|] s+ 4fd5e2p6 O, 268 )
Na| Mg| lllA IVA VA VIAVIA  VilA 1B 1B Al Si| P[s|[cI]ar] g3+ 45520 O 0.84 15
K ||Ca| Sc| Ti| ¥ | Cr|Mn| Fe| Co| Ni| Cu| Zn| Ga| Ge| As| Se| Br| Kr| g3+ 46526 7, 0.00 3.4
Rb| Sr| ¥ |/Zr| Nb|Mo| Tc| Ru| Rh| Pd| Ag| Cd] In | Sn|Sb| Te|| I [Xe|  Ga*" 45630 &, 7.94 8.0
Cs| Ba| LajHi| Ta|/w/|Re| 0s| Ir | Pt]| Au| Hg| T1| Pb| Bi|/Pa| at|[Rn]  TH3F 45520 7Ry 9.72 9.5
EIE' Ac \ Dy3t  4f955%p0 6H15/2 10.63 10.6
Ce| Pr|Nd|Pm|Sm|Eu]/Gd| Tb | Dy Hol| Er | Tm|b| Lu] goi iﬂ?gfpg 4;18 205690 1;54
I'Th| Pa| U | Np| Pu] Am|cm| BK| ct|Es] Tr3+ 4f12;2p6 311?/2 7'57 7'3
m s“p 6 . .
Best studied are the first and second transition series, (Ti to Cu and Yh3t 4f1355%p0 2F; 4.54 4.5

Zr to Hg) and the rare earths (La to Lu).

From atomic physics we know that a free atom or ion is characterised All' looks fine — except for Sm and Eu, where higherJ levels are very
by quantum numbers L, S and .J, and for a given L and S may take close to the ground state which means they are partly occupied above
up J values betweer|L — S| and L + S. Hund’s rules tell us that the 0 K.

ground state is that for which

e S'is as large as possible

e [ is as large as possible for that

o] {\L — S| if the shell is less than half full
L+ S if the shell is more than half full

representing the effects of exchange, correlation, and spin-orbit cou-
pling respectively.



Now look at the first transition series. Two states point directly towards neighbouring ions, three states point

lon State Term 9\/J(J + 1) Experimental p between neighbours. These states have different electrostatic ener-
Tidt, vt ad! 2D3/2 1.55 1.8 gies. So thel states are ‘locked’ to the crystal, and no longer behave

\eas 3d2 3P, 1.63 2.8 like an [ = 2 state with 2/ + 1 degeneraten values. This is called
o3t vat 393 4F3/2 0.77 3.8 quenchingof the orbital angular momentum. In the first transition
Mn3+, Cr2+ 345 OD 0.00 4.9 series, the magnetic moments arise almost entirely from spin.
Feo™, Mn*" 3d° 0S5,  5.92 5.9

Fe2t 346 °D, 6.70 5.4

Co*t  3d" TPy, 663 4.8

Ni2+ 348 3Fy 5.59 3.2

Cu’t 34 ?D;,  3.55 1.9

The agreement is very poor.

The p_roblem iscrystal field splitting Look at the electronicd states in lon State Term ¢+/S(S + 1) Experimental p
a cubic Crystal. T13+ v4+ 3d1 QD 1.73 1.8
d function, Cos, m=0 d function, Cos, m=2 ! 3/2 ) )
\'Aas 3d2 3P, 2.83 2.8
Crit, Vet 3d® YFy,  3.87 3.8
Mn3t, Cr¥t 34> Dy 4.90 4.9
Feo™, Mn?* 3d° %55,  5.92 5.9
Fe2t 3d6 5D, 4.90 5.4
Co?t  3d" 'Fy,y 387 4.8
Ni2+ 348 SFy 2.83 3.2
d function, Sin, m=1 d function, Sin, m=2 Cu2+ 3d9 2D5/2 173 19

The rare earths behave differently because the 4f electrons are in
smaller orbits than the 3d ones, and because spin-orbit coupling is
larger in the 4f ions.




10.6

So far we have no explanation for the existence of ferromagnetism.
By measuring the magnetic moment of a specimen of a ferromagnet,
we can see that the magnetisation must be near saturation. A quick
look at the Brillouin function

Interacting magnetic moments
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shows that at room temperature this needs
gsreB

kpT ’

or, at room temperature, taking g; ~ 2, B ~ 200 T.

10.6.1 Direct magnetic interaction

Where can such a large field come from? Can it be direct interactions
between spins a lattice spacing (sa.25 nm) apart? The field from
one Bohr magneton at a distance is of order

B=HE¥B 006,

A3

so direct magnetic interations are irrelevant (though they are signif-
icant in, for example, limiting the temperatures that can be reached
by adiabatic demagnetisation).

10.6.2 Exchange interaction

The interaction is quantum mechanical a form of exchange interac-
tion. Recall Hund’s rules — there exchange favoured parallel spins.
We write the Hamiltonian for the interaction between two spins on

different sitesi and j as

spin Q.aQ.
HZ-]. = —2J;;5;.5;,
where J;;, the exchange integral, depends on the overlap between
wavefunctions on different sites. Positive/ favours parallel spins,

negativeJ favours antiparallel spins. For the whole crystal,
HP = =Y TS,
i.J

or
HPN = 23 " 7;;8,.S;.

i<j

10.6.3 Effective field model

For a particular spin, i, we can write the interaction term as

P = 23" 18,8,
j#i

=— 2> J;S;] s
JF
Now note two points:

e The form of the interaction, —(...).S, looks like the interaction of
a spin with a magnetic field.

e Write

HM = = | 2D T/ (9sp))S; | - (gsmpS))
J#

= T DOeff- 1My,

where m; is the magnetic moment on atom.



e The summation suggests that we should be able to do some aver-
aging over the spins.

10.6.4 The mean field approximation

Assume that each spin interacts only with itsz nearest neighbours.
Then

2) EZ: sz

= 9shB

zgiLﬂ

T 9skB gSHB
. J z(mj).
9sHB 9SHB
Now identify the average magnetic moment per volume with the mag-
netisation:

Bcff =

for n spins per unit volume, giving
J M
Beff =2—— ©
9SHB NISHB

22J
oo

nggig
This gives theWeiss internal field mode(not originally derived in this
way) — the energy of a dipole in the ferromagnet is equivalent to an
effective field

B.g = AM.
Note that this is NOT a real magnetic field — the origin is quantum-
mechanical exchange, not magnetism, and as the interaction that un-
derlies exchange is the Coulomb interaction it can be much stronger.



