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11 Superconductivity

11.1 Basic experimental observations

11.1.1 Disappearance of resistance

The phenomenon of superconductivity was first observed in mercury
by Kammerlingh Onnes in 1911.
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There is a characteristic sharp drop in resistivity at a critical temper-
ature, TC. This effect has been observed in a wide range of elements
and compounds.
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New elements keep being added to the list – in 2002 lithium was
shown to superconduct under pressures of 23 to 36 GPa with criti-
cal temperatures of 9 to 15 K1.

1V.V. Struzhkinet al, 2002,Science2981213.
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Element ρ(77K) mΩ m TC
Al 3 1.2
Tl 37 2.4
Sn 21 3.7
Pb 47 7.2
Sb 80 3.5
Bi 350 8
Nb 30 9.2
For elements in the same group, higher normal resistivity seems to
go with higher transition temperature.
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For some compounds, much higher transition temperatures are found:

High-temperature superconductivity found in an insulator by Bed-
norz and Müller in 1986. Note that the transition is not very sharp.
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TC (K)
Nb3Sn 18
Nb3Ge 23
V3Si 17
La1.8Sr0.2CuO4 35
Y0.6Ba0.4CuO4 90
Tl2Ba2Ca2Cu2O10 125
Bi1−xKxBiO3−y 27
MgB2 40
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There is also anisotope effect: for different isotopes of the same ele-
ment in many cases

TCM1/2 = constant.

This is also found in some compounds:

In MgB2 only the B isotope affectsTC – Mg does not.
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11.1.2 Specific Heat

The specific heats of normal and superconducting phases are differ-
ent:
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From the specific heats, we can infer a variation of entropy with tem-
perature2:

This shows that the superconducting state is a moreorderedstate.

2Here for Sn, after Keesom and van Laer 1938)
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11.1.3 Effect of magnetic field

An external magnetic field shiftsTC to lower temperatures:
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11.1.4 Perfect diamagnetism

A superconductor expels magnetic flux (we will return to qualify this
later) when it is cooled below its critical temperature.
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If the flux is sero, it follows from

B = µ0(H +M)

that
M = −H,

that is,
χ = −1;

we call thisperfect diamagnetism. Note that there is a difference here
between the behavior of a superconductor and a perfect conductor:
from Maxwell’s equations we know

∇× E = −∂B
∂t

.

But a perfect conductor can support no electric field (even with fi-
nite current density J , if the resistivity is zero E = ρJ is zero. If
E is zero, so is∇ × E – in other words, for a perfect conductor the
flux density B cannot change with time – any flux present when the
material becomes perfectly conducting will be locked in.
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The magnetisation behaves in two different ways: Type I reverts sud-
denly to a normal material at a critical field Hc: Type II begins to
revert at Hc1 and the change is complete byHc2.

N.B think of rod, not sphere – field distortion effects (demagnetisa-
tion).
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11.2 Basic thermodynamics

Consider the Gibbs free energyG(B, T ). As we know that

dG = −SdT −M.dB,

the perfect diamagnetism in a fieldB increases the free energy by

B2

2µ0
.

In the normal state the magnetic field has negligible effect (because
the field energy with a susceptibilityχ ≈ ±10−6 is tiny compared
with that of the perfect diamagnet with χ = −1:

GN(B, T ) = GN(0, T ).

Thus

GS(B, T ) = GS(0, T ) +
B2

2µ0
.
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Now at the critical field, BC, the free energies of the superconducting
and normal states are equal:

GS(BC, T ) = GS(0, T ) +
B2

C

2µ0
= GN(BC, T )

= GN(0, T ),

so

GS(0, T ) = GN(0, T )−
B2

C

2µ0
,

so that the critical field is a measure of the stability of the supercon-
ducting state. In an applied fieldB < BC,

GS(B, T ) = GN(0, T )−
B2

C − B
2

2µ0
. (1)
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11.2.1 Specific heat

At constant p andB the entropy is given by

S = −∂G

∂T
,

so, using equation1,

SS − SN =
d

dT

(
B2

C − B
2

2µ0

)
=
BC

µ0

dBC

dT
.

As the specific heat is

C = T
dS

dT
,

CS − CN = T
d

dT

BC

µ0

dBC

dT

=
T

µ0

[(
dBC

dT

)2

+ BC
d2BC

dT 2

]
.
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But when T = TC, the critical field BC is zero, so

CS(TC)− CN(TC) =
T

µ0

(
dBC

dT

)2

.

This gives an explanation of the observed specific heat discontinu-
ity. Note that in an order-disorder transition such as this there is no
latent heat at the critical temperature.
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11.2.2 The shielding currents

The mechanism for excluding flux from the superconductor involves
inducing currents in the surface. Of course, if the exclusion were
perfect and occurred exactly at the surface this would imply infinite
current density at the surface – which is unphysical. So we need
to look rather more closely at the electromagnetism. Suppose that
n charge carriers per volume, each with chargeq and massm, are
continuously accelerated by a field:

dv

dt
=

qE
m

,

but the current is
J = nqv,

so
E =

m

nq2

dJ
dt

.
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Now
∇×H = J ,

or
∇× B = µ0J ,

so
E =

m

nµ0q2
∇× dB

dt
.

Now take the curl of both sides,

∇× E =
m

nµ0q2
∇×∇× dB

dt
,

and recall the identity

∇×∇× = ∇(∇.)−∇2,

the Maxwell equation

∇× E = −∂B
∂t

,

and
∇.B = 0,
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so that
dB
dt

=
m

nµ0q2
∇2dB

dt
.

We can write this as
dB
dt

= λ2 ∇2dB
dt

, (2)

with

λ =

√
m

nq2µ0
.

As one solution of equation2 is
dB
dt

= Ae−x/λ,

we can see that there is an exponential decay of the magnetic field
within the surface of the perfect conductor. We callλ the penetration
depth, and find that it is typically about 10−8 m.
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