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Abstract
Charged particle colloids typically consist of particles with negative surface charge suspended
in an aqueous electrolyte solution, and have been shown to display effective dielectric
properties at radio and microwave frequencies which can potentially be tailored for a range of
applications. This research describes a model for predicting such properties. A model
previously used to account for the dielectric performance at low frequencies is extended to
include higher-order terms in angular frequency, ω. The extended model encompasses the high
and low frequency relaxation contributions for the dielectric properties of charged particle
colloids. The parameters used to tailor these properties are identified.

1. Introduction

Charged particle colloids have been the focus of research for
many years [1–3]. The dynamics of the charge distributions
within these systems lead to interesting dielectric properties,
which occur over a range of timescales determined by various
aspects of the system. The motivation of our work stems
from the need to explore systems exhibiting losses at radio
and microwave frequencies.

Nanoparticle colloids can be incorporated into a
range of structures because of their small particle sizes,
without significantly affecting mechanical properties such
as weight and flexibility. Nanoparticle colloids, with
tailored dielectric properties, could potentially be used in a
number of applications, such as radar absorbing materials,
electromagnetic shielding and tissue imaging [4].

In a previous paper [1], we investigated the dielectric
properties of charged nanoparticle colloids at radio and
microwave frequencies. There, charged particle colloids were
investigated, which consisted of polystyrene particles with
negative surface charge, suspended in distilled water at a
volume fraction of 0.1. The spherical particle diameters,
d, varied from 20 to 220 nm. The results showed the

presence of a dielectric loss feature, which was interpreted
by fitting to a model. The model consisted of three main
contributions, attributed to three different relaxation (energy
dissipation) time-dependent processes. The Debye model [4]
was used to account for the response of the host medium,
water, and the Chassagne et al model [5] was used to describe
the permittivity response associated with the low frequency
relaxation mechanism. The Maxwell–Wagner model was used
to model an additional high frequency relaxation contribution
not accounted for by the Chassagne et al model. The measured
dielectric behaviour was well accounted for by the combined
contributions of the model.

However, one of the shortcomings of this approach is
that it treats the two particle-related relaxation mechanisms
separately, with different assumptions used in deriving the two
corresponding models. This means that the validity of the two
contributions differs depending upon the parameters used. For
example, the high frequency relaxation parameters are derived
from the Maxwell–Wagner model using the simplification
that the double layer forms a thin conducting shell. The
Chassagne et al model is not restricted by such a simplification
and is shown to be valid over a greater range of parameters,
including high and low zeta potentials and a greater number
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of double layer thicknesses [5]. Therefore, extending the
Chassagne et al model to account for high frequency, as well as
low frequency behaviour, will provide a more comprehensive
model to account for the observed behaviour. This paper
extends the previous research by describing such a model.

2. Theory

This section describes some of the charge dynamics that
lead to the dielectric properties exhibited by charged particle
colloids. These are extensively discussed elsewhere [1,2], and
so will only be summarized here in the context of the research
undertaken.

The response of the colloids to an applied electric field is
discussed here in terms of the complex dielectric constant or
effective permittivity:

ε(ω) = ε′(ω) − i · ε′′(ω), (1)

where ε′ and ε′′ are the real (energy storage) and imaginary
(energy loss) components of the effective permittivity,
respectively, and ω is the angular frequency.

As stated in section 1, charged particle colloids typically
consist of spherical polystyrene particles with negative surface
charge (resulting from sulfate surface groups in this case).
When such a particle is placed in an aqueous environment,
its negative surface charge attracts counter-ions, which leads
to the formation of a double layer of charge [2]. The motion of
the two types of ions from the bulk electrolyte, when driven by
an external oscillating electric field, will therefore be different.

In the absence of an applied electric field, the equilibrium
electrostatic potential, ϕ, is related to the charge density, ρ(r),
via Poisson’s equation:

∇2ϕ = −ρ(r)
ε

, (2)

where the permittivity, ε = εrε0. The charge density is
given by

ρ(r) = e(z+n+(r) − z−n−(r)), (3)

where n+(r) and n−(r) represent the densities of the positive
and negative ions, e is the elementary charge and z+ and z− are
the valences for each of the positive and negative ions.

The positive and negative ion densities are related to the
electrostatic potential via Boltzmann’s distribution:

n±(r) = n±
0 exp

(±z±eϕ(r)
kT

)
, (4)

where n+
0 and n−

0 are the positive and negative ion densities in
the absence of the potential, k is Boltzmann’s constant and T

is the temperature.
The equilibrium electrostatic potential is then calculated

by solving the resulting Poisson–Boltzmann equation [5],
corresponding to zero total current density, j±, arising from
diffusive and field induced motion of the positive and
negative ions:

j± = ±n±(r)u∇ϕ − D∇n±(r), (5)

δE 

δE 

E 

Figure 1. The charge redistribution resulting from the applied field,
E. The change in dipole strength gives rise to a resultant electric
field, δE.

where u is the mobility and D is the diffusion coefficient of
the ions [5].

When a time varying electric field (E = E0eiωt ) is applied
to a charged polystyrene particle, the tangential component of
the electric field around the particle surface causes azimuthal
transport of the double layer ions across the particle. This
results in an asymmetric charge distribution in the double
layer around the particle, as shown in figure 1. The charge
redistribution is accompanied by a change in dipole strength.
This gives rise to a resultant electric field, δE, around the
particle, which opposes the applied field as shown in figure 1.
The field, δE, has components tangential and perpendicular
to the particle surface [3]. Therefore, the external field-
driven charge redistribution will take place tangentially and
perpendicularly to the particle surface, which leads to a number
of relaxation, or energy dissipating, mechanisms [2].

O’Brien et al [3] showed that the tangential and
perpendicular flow of counter-ions in the double layer result
in a high frequency, low amplitude relaxation (i.e. low energy
dissipation), with the relaxation time, τ1, given by

τ1 ≈ 1

κ2D
, (6)

where κ is the reciprocal of the double layer thickness and D

is the ion diffusivity [5, 6].
After this rapid change in the charge density of the double

layer, a slower, low frequency, high amplitude, relaxation takes
place within the electrolyte, resulting from the changes in
the dipole strength of the double layer. The low frequency
relaxation time, τ2, associated with this process is given by

τ2 = R2

D
, (7)

where R is the radius of the particle. The size dependence
of this dissipative process is of particular interest here. The
relaxation mechanisms are discussed further in [1].

The dielectric dispersion (i.e. frequency dependence of
the permittivity) associated with the charge dynamics can be
determined by considering the change in electrostatic potential,
δϕ, and ion densities, δn±, resulting from an applied field,
which can be represented as

ϕ → ϕ + δϕ, (8)

n± → n± + δn±. (9)
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The continuity of ions is given by

∇ · j± +
∂δn±

∂t
= 0, (10)

which leads to two conditions:

∇ · j+ + ∇ · j− = −iω(δn+ + δn−), (11)

∇ · j+ − ∇ · j− = −iω(δn+ − δn−), (12)

assuming the density changes are oscillatory and at frequency
ω. The changes in electrostatic potential, δϕ, and ion densities,
δn±, can then be calculated by solving these equations,
together with equation (5). Such a solution was obtained
by Chassagne et al [5], where additional boundary conditions
associated with the fields, densities and ion fluxes describing
the double layer and the behaviour of the bulk electrolyte far
from the particle (asymptotic behaviour) were used. This can
then be used to derive an expression for the dipolar coefficient,
β(ω). The relationship between β(ω) and permittivity will be
given shortly. The Chassagne et al model is valid for all double
layer thicknesses, κ−1 and zeta potentials, ξ (electrostatic
potential resulting from double layer ions [7]). The result
derived by Chassagne et al for the high zeta potential case
is presented here (equation (13)). A more detailed description
of the parameters used to model this behaviour can be found
in [5].

β(ω) = K2 − K1 + 2Ks
‖/R + KD

⊥/R

K2 + 2K1 + 2Ks
‖/R − 2KD

⊥/R
, (13)

where K1 and K2 are the frequency-dependent electrolyte and
particle complex conductances, respectively, Ks

‖ represents the
complex conductance of the double layer along the particle
surface, KD

⊥ is the perpendicular complex conductance due to
the diffusion layer outside the double layer and R is the particle
radius. Ks

‖ and KD
⊥ are both related to the zeta potential, as

shown in equations (14) and (15) [5].

Ks
‖ = −eD

kT

[∣∣∣∣qsε0ε1ξ

R

∣∣∣∣
]

, (14)

KD
⊥ = 2

J1

J2

eD

kT

[∣∣∣∣qsε0ε1ξ

R

∣∣∣∣
]

, (15)

where ε1 is the electrolyte permittivity, qs is the surface charge
density [8] and

J1 = 1 + λnR (16)

J2 = 2 + 2λnR + λ2
nR

2 (17)

and λ2
n is an eigenvalue of a matrix equation describing

the behaviour beyond the double layer, as summarized by
Chassagne et al [5].

The dielectric properties of a colloid can be represented
by the complex electric conductivity K∗(ω):

K∗(ω) = σ(ω) + iωε0ε
′(ω), (18)

where σ(ω) is the frequency-dependent conductivity and ε′(ω)

is the real permittivity of the colloid.

The dipolar coefficient and complex conductivity are
related by the Maxwell–Wagner equation [5]:

K∗(ω) − K1

K∗(ω) + 2K1
= Vβ, (19)

which, at dilute concentrations, reduces to

K∗(ω) = K1(1 + 3Vβ), (20)

where V is the volume fraction of the particles.
The dipolar coefficient and the permittivity of the charged

particle colloids can therefore be related by [6]

ε′(ω) − ε2

3V ε2
= β ′(ω) +

β ′′(ω)K1

ωε0ε1
, (21)

ε′′(ω)

3V ε2
= (β ′(ω) − β ′(0))K1

ωε0ε1
− β ′′(ω), (22)

where ε1 and ε2 are the electrolyte and particle permittivity,
respectively, β ′ and β ′′ are the real and imaginary components
of the dipolar coefficient, respectively, and ε′′(ω) is the
imaginary permittivity of the colloid.

Equations (21) and (22) now enable the dielectric
properties to be determined, using the zeta potential, ξ , and
double layer thickness, κ−1, as fitting parameters. An estimate
of ξ and κ−1 can also be obtained from equations given
in [6, 9]. However, equations (21) and (22) are valid only
for frequencies much lower than the relaxation frequency of
water [4]. They also do not account for the high frequency
relaxation region. This is because the Chassagne et al model
is valid for frequencies such that ω � D±κ2 which, as shown
in equation (6), is lower than the high frequency relaxation
region. The reason for this is that ω is only expanded to first
order in the equations shown above [5]. In the previous paper,
the contribution to permittivity calculated using this method
was referred to as the low frequency contribution, εLF(ω), (i.e.
substituting ε(ω)LF for ε(ω) in equations (21) and (22)). The
permittivity contribution from the high frequency relaxation,
εHF(ω), was accounted for by the Maxwell–Wagner model,
using a method employed by Grosse et al [6]. The different
relaxation regions were represented by a series of Debye-
type contributions, the sum of which provided the overall
contribution to permittivity, εeff(ω):

εeff(ω) = εLF(ω) + εHF(ω) + εwp + ε∞, (23)

ε∞ accounts for the permittivity at higher frequencies beyond
the relaxation frequency of water, where the permittivity
decreases to a constant value (∼4.5 at 20 ◦C in the case of
pure water [4]). The term εwp accounts for the contribution
due to water, given by the Debye model [4]:

εwp = n2 +
(ε1 − n2)

1 + iωτwp

, (24)

where n is the refractive index (n2 = 1.7 for water [4]) and τwp

is the dipolar relaxation time, dependent upon the viscosity of
water (η = 10−3 N sm−3) and the radius, a, of a water molecule
(a = 0.14 nm):

τwp = 4πa3η

kT
. (25)
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As explained in section 1, a more comprehensive model is
required, combining the low frequency and high frequency
relaxation contributions (εLF(ω) and εHF(ω), respectively).
The extended model is now derived by following a method
analogous to that used by Chassagne et al . However, the
analysis demonstrated here accounts for contributions at higher
frequencies, with the inclusion of higher-order terms in ω, as
will be highlighted.

In order to determine the dielectric response resulting
from the applied electric field, we first consider the change
in ion densities, δn± or δni , in such a system, as introduced by
equation (9). As shown by Chassagne et al, this is given by

�δni = iω

Di

δni +
vizie

2n∞
ε0ε1kT

∑
j

zj δnj , (26)

where i or j refer to the positive (+) or negative (−) ionic
species.

Equation (26) can also be written in matrix form to give

�

(
δn+

δn−

)
=

[
iωD−1

+ + κ2
0 v+z

2
+ κ2

0 v+z+z−
κ2

0 v+z+z− iωD−1
− + κ2

0 v−z2
−

]

×
(

δn+

δn−

)
, (27)

where κ2
0 = κ2 ∑

i vizi , zi are the valences for each of the ions
and vi are the corresponding stoichiometric coefficients.

Using the same terminology as Chassagne et al, the
eigenvectors of the matrix are designated δnn and δnc and the
corresponding eigenvalues are written λ2

n and λ2
c . These satisfy

�δnn = λ2
nδnn and �δnc = λ2

cδnc. (28)

The resulting equations are all reduced to first order in ω [O(ω)]
by Chassagne et al. These equations are then used to obtain
the result for the dipolar coefficient, β(ω) (equation (13)). The
second order [O(ω2)] solutions of the resulting equations are
summarized in the equations that follow, which have also been
extended to third order in the appendix.

In order to obtain the eigenvalues of the matrix shown in
equation (27), the corresponding determinantal equation is first
solved. Assuming the matrix equation is of the form Ax = λx,
where A is the matrix:

A =
[

iωD−1
+ + κ2

0 v+z
2
+ κ2

0 v+z+z−
κ2

0 v+z+z− iωD−1
− + κ2

0 v−z2
−

]
, (29)

the characteristic equation is given by |A − λI| = 0:

i.e.

∣∣∣∣ iωD−1
+ + κ2

0 v+z
2
+ − λ κ2

0 v+z+z−
κ2

0 v+z+z− iωD−1
− + κ2

0 v−z2
− − λ

∣∣∣∣ = 0.

(30)
This leads to the quadratic equation:

λ2 − λ(iωD−1
+ + iωD−1

− + κ2
0 v+z

2
+ + κ2

0 v−z2
−)

− ω2D−1
+ D−1

− + iωκ2
0 (D−1

+ v−z2
− + D−1

− v+z
2
+) = 0. (31)

The quadratic equation (31) is then solved to give the two
eigenvalues λ2

n and λ2
c of the matrix. These are shown in

equations (32) and (33), respectively, with the second order

terms [O(ω2)], resulting from the Taylor expansions, also
included.

λ2
n = iω

(
z+D

−1
− − z−D−1

+

z+ − z−

)
−ω2(z−D−2

+ − z+D
−2
− )

κ2(z+ − z−)
, (32)

λ2
c = κ2 + iω

(
z+D

−1
+ − z−D−1

−
z+ − z−

)
+

ω2(z−D−2
+ − z+D

−2
− )

κ2(z+ − z−)
.

(33)
As expected, the first order terms [O(ω)] shown in
equations (32) and (33) are in agreement with those found
by Chassagne et al.

The eigenvalues can then be used to find the resulting
eigenvectors, δnn and δnc, which are given by

δnc = δn+ − δn−

[
1 − iω

κ2
(D−1

+ − D−1
− )

− ω2(z−D−2
+ − z+D

−2
− )

κ4z−

]
, (34)

δnn = δn+ − δn−

(
z+

z−

) [
1 +

iω

κ2
(D−1

+ − D−1
− )

+
ω2(z−D−2

+ − z+D
−2
− )

κ4z+

]
. (35)

The eigenvalues and eigenvectors now form the fundamental
basis for determining the resulting behaviour.

As shown in equations (8) and (9), an applied field results
in a change in electrostatic potential, δϕ, and ion densities, δn±.
The change in positive and negative ion densities can now be
obtained from the eigenvectors, δnn and δnc, in equations (34)
and (35), to give

δn− = (δnc − δnn)
z−

z+ − z−

×




1 − iω

κ2
(D−1

+ − D−1
− )

z+ + z−
z+ − z−

+
z2
−ω2

κ4(z+ − z−)2

×
(−2(z−D−2

+ − z+D
−2
− )

z−

−z−(D−1
+ − D−1

− )2

(z+ − z−)

(
1 +

z+

z−

)2
)




,

(36)

δn+ = 1

z+ − z−

×




z+δnc − z−δnn − iω

κ2
(D−1

+ − D−1
− )

×2z+z−(δnc − δnn)

z+ − z−
+

z+z−ω2(δnc − δnn)

κ4(z+ − z−)3

×




(z−D−2
+ − z+D

−2
− )

(
−2(z+ − z−) +

(z+ − z−)3

z+z−

)

−(D−1
+ − D−1

− )2

(
− (z+ + z−)(z+ − z−)2

z−

+ z2
−

(
1 +

z+

z−

)2)







.

(37)
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As shown by Chassagne et al, the eigenvector δnc provides
no contribution to the asymptotic solution (solution in the bulk
electrolyte beyond double layer). This is because it typically
decays over a Debye length (∼double layer thickness, κ−1) due
to the contribution of κ2 in the eigenvalue λ2

c . The equations
for the change in ion densities corresponding to the positive
and negative ion densities can therefore be simplified to

δna
− = −z−δnn

z+ − z−

×




1 − iω

κ2
(D−1

+ − D−1
− )

z+ + z−
z+ − z−

+
z2
−ω2

κ4(z+ − z−)2

×
(−2(z−D−2

+ − z+D
−2
− )

z−

−z−(D−1
+ − D−1

− )2

(z+ − z−)

(
1 +

z+

z−

)2 )




, (38)

δna
+ = −z−δnn

z+ − z−

×




1 − iω

κ2
(D−1

+ − D−1
− )

2z+z−
z+ − z−

+
z+ω

2

κ4(z+ − z−)3

×




(z−D−2
+ − z+D

−2
− )

(
−2(z+ − z−) +

(z+ − z−)3

z+z−

)

−(D−1
+ − D−1

− )2

(
− (z+ + z−)(z+ − z−)2

z−

+ z2
−

(
1 +

z+

z−

)2 )







,

(39)

where the superscript, a, denotes the asymptotic solution, far
from the particle.

The resulting charge density is then given by δρa =
e(z+δn

a
+ + z−δna

−) which leads to

δρa = −ez−δnn

z+ − z−

×




z+ + z− − iω

κ2
(D−1

+ − D−1
− )

(
2z2

+ + z+z− + z2
−

z+ − z−

)

+
ω2

κ4(z+ − z−)2




(z−D−2
+ − z+D

−2
− )

(
− 2z2

+(z+ − z−)

+
z2

+(z+ − z−)3

z+z−
− 2z2

−

)
−(D−1

+ − D−1
− )2

×




−z2
+(z+ + z−)(z+ − z−)2

z−

+z2
+z

2
−

(
1 +

z+

z−

)2

+
z4

+

z+ − z−

(
1 +

z+

z−

)2










.

(40)

The first order terms shown in equation (40) are again in
agreement with those given by Chassagne et al.

With the extended second order equations shown above,
the corresponding asymptotic solution of Poisson’s equation
beyond the double layer also needs to be corrected. This is
given by

δψa =
(

−E0r +
P

4πε0ε1r2

)
cos θ + Anδnn, (41)

where r is the radial position.
The first term is accounted for by the external electric

field potential. The second term accounts for the change in
electric potential associated with the asymptotic dipole field,
of strength P . The third term is used by Chassagne et al to
determine the contribution from the ionic distribution around
the sphere. This is given by

An = −δρa

λ2
n(z+ − z−)δnnε0ε1

. (42)

The equations derived above can now be used to determine the
dipolar coefficient, β(ω), as shown in equation (13). However,
the term for the perpendicular complex conductance due to the
diffusion layer outside the double layer, KD

⊥ , is also adjusted
to include second order contributions and is given by

KD
⊥ = R

F

H
, (43)

where

F = An

[
J1

(
2

R
Ks

‖ + K2

)
+ J2K1

]

+
ez−

z+ − z−

∑
ziNi

(
J1

2Ds
i

R
− J2Di

)
, (44)

Ds
i = Di

ez−ξ

kT κ
, Ni = δni(z+ − z−)

(δnc − δnn)z−
(45)

and

H = J2

[
An − z−

z+ − z−
N−

kT

ez−ν−n∞

]
. (46)

The permittivity resulting from the extended dipolar coefficient
can be calculated from equations (21) and (22). Because
this new approach has been applied to determine the high
as well as low frequency relaxation behaviour, the resulting
permittivity contribution will be referred to as ε(ω)HLF. The
overall permittivity of the system, εeff 2(ω), is now given by

εeff 2(ω) = εHLF(ω) + εwp + ε∞. (47)

3. Comparison of models

Figures 2 and 3 compare the real and imaginary components
of permittivity for results derived from the first model [1]
represented by equation (23) (εeff(ω)) and the extended model
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Figure 2. Comparison of predicted real permittivity for 110 nm
charged polystyrene colloids (ξ = 4kT /e and κR = 30,
D = 1.1 × 10−9 m2 s−1, T = 298 K, particle (polystyrene)
permittivity, ε2 = 2, electrolyte (water) permittivity, ε1 = 78,
ε∞ = 4.5, V = 0.1, η = 10−3 N s m−3).
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Figure 3. Comparison of predicted imaginary permittivity for
110 nm charged polystyrene colloids (ξ = 4kT /e and κR = 30,
D = 1.1 × 10−9 m2 s−1, T = 298 K, particle (polystyrene)
permittivity, ε2 = 2, electrolyte (water) permittivity, ε1 = 78,
ε∞ = 4.5, V = 0.1, η = 10−3 N s m−3).

represented by equation (47), with second and third order
contributions (εeff 2(ω)). The performance was modelled
using a zeta potential of ξ = 4kT /e (∼100 mV) and a value
of κr = 30. These values were based on previous research
[1], where they were estimated from static conductivity
measurements on the colloids and shown to produce the best
fit to experimental data.

As shown in figures 2 and 3, the two models produce
similar performance, with the only change occurring at higher
frequencies. Here a small amplitude peak is clearly visible
in the extended model results, due to the presence of the
higher-order terms highlighted in the equations above. As
discussed in section 2, the results of the first model, εeff(ω), also
contain a high frequency relaxation peak (Maxwell–Wagner
contribution), which is not observed in figures 2 and 3, due to
the low amplitude of the peak in comparison with the relatively
high permittivity background medium.

In order to determine the origin of the high frequency
peak introduced by the extended model, εeff 2(ω), figures 4 and
5 compare the permittivity response at two different particle
sizes.

As shown in figures 4 and 5, a decrease in particle size
leads to an increase in frequency for the high frequency small
amplitude peak. This change in frequency with particle size
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Figure 4. Variation of predicted real permittivity with particle size
using extended model (equation (47)).
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Figure 5. Variation of predicted imaginary permittivity with particle
size using extended model (equation (47)).
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Figure 6. Variation of Maxwell–Wagner permittivity contribution
(real and imaginary components) with particle size in model 1
(equation (23)).

is in agreement with that expected from the Maxwell–Wagner
equation for the high frequency relaxation response. The high
frequency Maxwell–Wagner contributions, εHF(ω), made to
the first model (equation (23)), are shown in figure 6 for the
same parameters introduced above.

Figure 6 confirms that the additional high frequency peaks
produced by the extended model, εeff 2(ω), occur at similar
frequencies to those of the high frequency relaxation, with the
shifts in frequency with particle size also in agreement. The
differences in amplitudes can be explained by differences in the
parameters and assumptions used in deriving the two models
outlined above.
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Although the magnitude of the peak is relatively low, its
high frequency position could prove effective for applications
operating close to the microwave frequency region, such as
microwave absorbers, electromagnetic control and screening
applications. For microwave absorbers, minimizing the real
component of permittivity, while maximizing the imaginary
component is generally desirable [10]. The relatively
low real component of permittivity exhibited by high
frequency relaxation peak is therefore well suited to such
applications. Further optimization of the colloids could be
expected by using a lower permittivity background medium,
which could result in the relative amplitude of the peak
increasing.

4. Conclusion

The inclusion of second and third order terms in angular
frequency, ω, has resulted in a model that encompasses
both the high and low frequency relaxation contributions for
the dielectric properties of charged particle colloids. This
represents an improvement on the previous model [1], which

treated the mechanisms operating in the two regions separately,
with the validity of the solutions obtained restricted by the
simplification that the double layer formed a thin conducting
shell. The extended model shows a similar response to the
previous model at low frequencies. Beyond this region,
the extended model shows a larger contribution from the
high frequency relaxation, but is still small in comparison
with the low frequency, high amplitude relaxation peak.
However, this could prove advantageous for applications such
as microwave absorbers, where lower real components of
permittivity are generally desirable. The extended model
is likely to provide broader applicability for the future
optimization of such colloids at higher frequencies, because it
overcomes the restrictions imposed by the Maxwell–Wagner
model. Because of the high frequency position of this peak, it is
potentially an important region for applications operating close
to the microwave frequency region, such as electromagnetic
control and screening applications, and its optimization could
therefore prove beneficial in such systems.

Appendix. Extended third order equations

This section presents the extended third order solutions to the equations shown in section 2.
Equations (A32) to (A40) correspond to equations (32)–(40) in section 2, with the additional third order contributions

included.

λ2
n = iω

(
z+D

−1
− − z−D−1

+

z+ − z−

)
− ω2(z−D−2

+ − z+D
−2
− )

κ2(z+ − z−)
+

iω3(D+ + D−)(z−D2
− − z+D

2
+)

κ4D3
+D

3−(z+ − z−)
, (A32)

λ2
c = κ2 + iω

(
z+D

−1
+ − z−D−1

−
z+ − z−

)
+

ω2(z−D−2
+ − z+D

−2
− )

κ2(z+ − z−)
− iω3(D+ + D−)(z−D2

− − z+D
2
+)

κ4D3
+D

3−(z+ − z−)
, (A33)

δnc = δn+ − δn−

[
1 − iω

κ2
(D−1

+ − D−1
− ) − ω2(z−D−2

+ − z+D
−2
− )

κ4z−
+

iω3(D+ + D−)(z−D2
− − z+D

2
+)

κ6D3
+D

3−z−

]
(A34)

δnn = δn+ − δn−

(
z+

z−

) [
1 +

iω

κ2
(D−1

+ − D−1
− ) +

ω2(z−D−2
+ − z+D

−2
− )

κ4z+
− iω3(D+ + D−)(z−D2

− − z+D
2
+)

κ6D3
+D

3−z+

]
, (A35)

δn− = (δnc − δnn)
z−

z+ − z−




1 − iω

κ2
(D−1

+ − D−1
− )

z+ + z−
z+ − z−

+
z2
−ω2

κ4(z+ − z−)2

×
(

−2(z−D−2
+ − z+D

−2
− )

z−
− z−(D−1

+ − D−1
− )2

(z+ − z−)

(
1 +

z+

z−

)2
)

+
iω3

κ6

(−2(D+ + D−)(z−D2
− − z+D

2
+)

D3
+D

3−(z− − z+)
+

2(D− − D+)(z− + z+)(z−D2
− − z+D

2
+)

D3
+D

3−(z− − z+)

)

−
z−(D−1

+ − D−1
− )(z− + z+)

(
−2D−2

+ − 2z+D
−2
−

z−
+

(D+ − D−)2(z− + z+)
2

z−(z− − z+)D2
+D

2−

)

(−z− + z+)2




,

(A36)
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δn+ = 1

z+ − z−

×




z+δnc − z−δnn − iω

κ2
(D−1

+ − D−1
− )

2z+z−(δnc − δnn)

z+ − z−
+
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×



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−2
− )
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−2(z+ − z−) +
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)

−(D−1
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− )2

(
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z−
+ z2

−

(
1 +

z+

z−

)2
)



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κ6D3
+D
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
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2
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2
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2
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(
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)

−
(D− − D+)(z− + z+)
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


, (A37)

δna
− = −z−δnn

z+ − z−


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z+ − z−

+
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−ω2
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(
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+ − z+D
−2
− )
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(z+ − z−)

(
1 +

z+
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)2
)

+
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(−2(D+ + D−)(z−D2
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2
+)

D3
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+

2(D− − D+)(z− + z+)(z−D2
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2
+)

D3
+D
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)

−
z−(D−1
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(
−2D−2

+ − 2z+D
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−

z−
+

(D+ − D−)2(z− + z+)
2

z−(z− − z+)D2
+D

2−

)
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


, (A38)

δna
+ = −z−δnn

z+ − z−

×
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)
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2
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+
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(
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2
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2
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
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
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, (A39)
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δρa = −ez−δnn

z+ − z−

×


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+
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
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.

(A40)

References

[1] Hussain S, Youngs I J and Ford I J 2004 J. Phys. D: Appl.
Phys. 37 318

[2] Lyklema J, Van Leeuwen H P and Minor M 1999 Adv. Colloid
Interface Sci. 83 33

[3] O’Brien R W 1986 J. Colloid Interface Sci. 113 81
[4] Craig D Q M 1995 Dielectric Analysis of Pharmaceutical

Systems (London: Taylor and Francis)
[5] Chassagne C, Bedeaux D and Koper G J M 2001 J. Phys.

Chem. 105 11743

[6] Grosse C, Tirado M, Pieper W and Pottel R 1998 J. Colloid
Interface Sci. 205 26

[7] Atkins P W 1999 Physical Chemistry (Oxford: Oxford
University Press)

[8] Russell A S, Scales P J, Mangelsdorf C S and White L R 1995
Languir 11 1553

[9] Hunter R J 1992 Foundations of Colloid Science (Oxford:
Oxford University Press)

[10] Pitman K C, Lindley M W, Simkin D and Cooper J F 1991 IEE
Proc. F 138 (3) 223

9

http://dx.doi.org/10.1088/0022-3727/37/3/002
http://dx.doi.org/10.1016/S0001-8686(99)00011-1
http://dx.doi.org/10.1016/0021-9797(86)90208-0
http://dx.doi.org/10.1006/jcis.1998.5587
http://dx.doi.org/10.1021/la00005a024

	1. Introduction
	2. Theory
	3. Comparison of models
	4. Conclusion
	 Appendix. Extended third order equations
	 References

