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Almtraet--The coupled equations of heat and mass transfer are used to develop a model of aerosol 
generation in fluid flow over liquid surfaces. Maximum aerosol densities'achieved in turbulent flow of an 
initially saturated gas/vapour mixture along a heated or cooled pipe are calculated for water-vapour/alr 
and for sodium-vapour/argon. The model is also applied to flows near the heated surface in free 
convective situations. An analysis of an experiment in which sodium aerosols were generated in a cavity 
over a hot sodium pool indicates that the droplets which formed grew by passing many times through the 
boundary layer over the pool. 

N O M E N C L A T U R E  

A Cross-sectional area of pipe 
c, Saturated vapour concentration 
cp Specific heat at constant pressure 
~p Mean specific heat of mixture 

Cn~ Surface condensation number 
clS Element of surface area 
dV Volume element 

D Vapour-gas diffnsivity 
h Specific ¢a thalpy 
j~ Diffusive aerosol current relative to gas 
j, Diffusive vapour current relative to gas 
k Therm/d conductivity of vapour/gas mixture 
1 Perimeter of pipe 
L Latent heat of vaporization 

.Z Loading 
~h~ Aerosol growth rate per unit volume 

n Outward normal from surface 
N Aerosol number density 

Conductive heat current 
R Mean radius of aerosol droplets 
S Saturation 
t Time 

T Temperature of bulk flow 
T, Roof temperature of cover gas space 
T, Temperature of sodium pool 
v Velocity 
x Distance normal to wall 
z Distance along pipe 

Dimensionless parameter [equation (33)] 
6a Dimensionless ratio [equation (29)] 
e Temperature difference between rising and falling currents in the cover gas space 

4o Dimensionless ratio [equation (28)] 
Heat transfer quantity [equation (41)] 

p Total density 

Subscripts 
a Pertaining to aerosol 
e Pertaining to equilibrium 
g Pertaining to gas 
v Pertaining to vapour 

w Pertaining to wall 

Superscript 
Derivative with respect to T 
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1. I N T R O D U C T I O N  

There are two main areas of nuclear power technology where an understanding of aerosol 
physics can contribute. Firstly, in the design of the fast reactor cover gas space, where a 
sodium aerosol can develop, and secondly for studying the consequences of a release of 
radioactive material as aerosol in a hypothetical accident. Sodium aerosol in the cover gas 
space can affect the heat transfer properties of the cavity and can freeze in deposits on the 
roof. It is important to understand these phenomena, not least for reasons of safety. As for 
accident studies the interest lies in the processes of formatfon and removal of possibly 
dangerous suspended particles in a reactor containment atmosphere. 

In practical cases the formation and growth of aerosols is complicated, although the basic 
physics is clear. The complications arise from the coupling together of several distinct 
processes: fluid dynamics, heat transfer and droplet growth. Fluid flow has an influence 
upon heat dissipation, which in turn is linked with mass transfer and aerosol growth 
dynamics. These latter processes can affect the characteristics of the flow, especially in cases 
of free convection. In this paper we simplify the problem by imposing a flow. We then show 
how maximum aerosol densities resulting from heat and mass transfer into or out of the flow 
can be calculated. 

Much work has been done on the relevance to aerosol physics of the coupling between 
heat and mass transfer (Clement, 1985). There have, however, been few experiments carried 
out expressly to test these predictions. An exception is a study currently being performed at 
Harwell which is concerned with the behaviour of aerosol in a turbulent flow along a vertical 
pipe with cooled walls. This is a situation where to a first approximation the fluid flow is not 
coupled to the aerosol physics, and can be taken to be a well-mixed turbulent flow (for high 
enough Reynolds number) in the bulk, and a boundary layer at the wall through which heat 
and mass pass out of the bulk flow. The physics of the system, and that for the analogous 
heating case in which heat and mass pass into the flow are shown in Fig. 1. In the next 
section, we develop a model to describe how aerosol density changes in the flow are related 
to the temperature changes. In Section 3 we perform some example calculations for aerosols 
formed by heating and cooling water-vapour/air and sodium-vapour/argon mixtures. The 
results are discussed in Section 4. In Section 5 we apply the model to free flow over an open 
pool in a convective situation. Finally, in Section 6, we give our conclusions on the results 
obtained. 

2. THE M O D EL 

The basic conservation equations for the separate phases of the three component 
vapour-gas-aerosol system and the total enthalpy are: 

dpg 
~t t-V.(pgv~) = 0, (1) 

t3pv 
~ - + v . ( p v v ~ ) + v . i ,  = -,~v, (2) 

dpa 
dt t -V ' (p ,v , )+V ' jo  = rh~, (3) 

d 
~(p~hg + p~h,, + p,,ho) + V'(q + pghgv a + p~hvvv + p,,hovo) = 0. (4) 

The subscripts g, v, and a of the density p, the velocity v, and the specific enthalpy h, refer to 
the gas, vapour, and aerosol respectively. The aerosol growth rate, or mass transfer rate per 
unit volume from the vapour to the aerosol is rho, and the currents Js, Jo and q are defined 
below. 

In accordance with common practice in fluid problems, any sources to the enthalpy from 
friction have been neglected in equation (4). The equation then applies to pipe flow even 
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Fig. 1. Changes in the total aerosol density from po~ to P,r produced by a well-mixed flow being (a) 
heated by a hot pool and (b) cooled at a wall. 

when the pressure is changing moderately, the energy from this going into changes in the 
bulk velocity, v. 

In equation (2), the vapour current has been written as 

pvvv = pvvg +j , ,  (5) 

where j, is the vapour current relative to the gas. 
Similarly, the aerosol current is written as 

pore = p,v~+j , ,  (6) 

where jo is the aerosol current relative to the gas. 
Finally, the conductive heat current is 

q = -kVT.  (7) 

Consider the steady state flow through a pipe of cross-sectional area A. The time 
derivatives vanish in equations (1)-(4) and the equations can be integrated over a volume 
element of length dz along the flow, obtaining, for example 

V" (pg vg) d V = ~ dS pg %" n = dz d (pgvg A), (8) 

where the outward normal n is taken to be in the gas flow direction in which there is a 
uniform velocity v 9. The equations are averaged over possible realizations of the flow which 
is taken to be turbulent. It is assumed that the streamwise turbulent fluctuations in flow 
velocity are much smaller than the mean velocity along the pipe, so that the contribution of 
fluctuations to the integrals can be neglected. 

It is assumed that for a turbulent flow in the pipe the densities etc. within the bulk flow are 
constant across the cross-section, outside the boundary layers. Only the contribution of the 
vapour current against the wall is important, i.¢. 

Sis" dS = IA dz, (9) 

where I is the perimeter of the area A andjs is the magnitude of j,. A positivej~ then indicates 
a loss of vapour to the wall and condensation. Since the vapour currentj,  is only required at 
the wall, the effects of turbulent transport are irrelevant and js is given by (Clement, 1985) 

j , =  - D ( V p v - ~ V p , ) ,  (10) 

where D is the vapour-gas molecular diffusivity. 
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Under these particular conditions, equations (1)-(3) become 

d 
dz (PgvgA) = O, il  1) 

d 
~z (pvvaA  ) = -- Ij~ -- A thv, (I 2) 

d 
~z (povgA)  = - lja + Arhv. (13) 

Likewise the enthalpy equation (4) becomes 

d 
-~zz(pghgvgA + pvh~vgA + pahavgA ) = - lhvwjs - lhawja - lq, (14) 

where the subscript w denotes wall value. 
The enthalpies are functions of temperature and pressure and if the temperature is 

changing along the tube, then for the flow conditions considered here 

dhg dT 
dz = cpg dz '  (15) 

etc., where c H is the specific heat at constant pressure, and T is the bulk flow temperature. 
Using equations (11)-(13), equation (14) can be rewritten as 

_ dT 
pCpVoA-~z = lj,(hv - h~w) + lja(ha - haw) + Ath~(hv - ha) - lq, (16) 

where the mean specific heat 6p is given by 

p~p = pgc~  + p~cp~ + pacp,. (17) 

The first two terms on the right-hand side of equation (16) are correction terms arising 
from any change in temperature of the vapour or aerosol in going from the bulk flow to the 
wall. They will generally be small in comparison to the conductive flux (fourth term) and the 
aerosol condensation term (third term), which is specified by the latent heat of vaporization 

L ( T )  = h , , -  ha. (18) 

Using the definitions of h, etc., equation (16) can be rewritten as 

_ dT 
p c p v g A ~  z = ALth~ - lq + I ( T -  Tw)(%~js + c~ja) ,  (19) 

where Tw is the wall temperature. 
The heat current at the wal l  can be related to the mass  current using a surface 

condensation number (Clement, 1985) 

Cns = q/ (L(Tw)js ) .  (20) 

From equation (11), the rate of change of pg is related to that of Avg by 

d (Avo) = - vgA (21) 
1 dp. 
Po dz  ' 

and so equations (12) and (13) reduce to 

( d~;  pv dp3 " ~ - ljs - Ath~, (22, 
voA Po dz  ] = 

v°A Po dz  J = 
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Next my can be eliminated between equations (22) and (23) and between equations (19) and 
(22) to obtain 

and 

L az az p. az j 

= -- IL(Tw)j , (1  + C n s ) + l ( T -  Tw)ct, , ,( j , ,+j,  ), (25) 

where equation (20) has been used and also the relation between the latent heats at different 
temperatures: 

L ( T )  - L (T , , )  = (cpv - cn , , ) (T -  Tw). (26) 

Finally, the ratio of equation (24) to (25) provides an expression for the rates of change 
along the path: 

'- dp~ L ( T ' ) [ I  + Cn'--(~°] d (pv + P°) = (I + 2")LL(T)-d~-z + P~'-~z dT 1  

+ - -  {L(Tw)(pv+po)[1 + C n , - f o ] - L ( T ) ( 1  + 2o)po}, (27) 
Pg 

where 
2o = jo/ j , ,  (28) 

and (~° is a small correction term that can often be neglected: 

t~° = %,(1 + 2a) ( T -  Tw) /L(T~) .  (29) 

If it is assumed that the vapour density in the main flow is kept close to saturation by 
aerosol formation or evaporation, p~ takes on its equilibrium value, p,e(T) ,  so that 

dpv 
dz  = p',,,(T) . (30) 

If this were true for the boundary layer as well, then the surface condensation number 
would be given by 

k(1 -- ce(T))  
Cns = DLpc 'e (T)  ' (31) 

where k is the thermal conductivity of the mixture and the equilibrium vapour concentration 
is 

c~(T) = p~ , (T ) / (pv , (T )  + Pg), (32) 

i.e. the vapour concentration is defined as the mass fraction of aerosol. The derivative of c~ 
with respect to T is taken at constant pressure. 

Otherwise, an amended value should be used (Clement, 1987), corresponding to a 
maximum supersaturation (S- 1) in the boundary layer 

Cns(S) - Cns(1) _ Cns(1) (33) 

(1 4- ~t(S- 1) ½) 1 + (4nN/~)½ c; 

where at = (cTc,)½/c', ~ 1 and the plus and minus signs refer to the cooling and heating cases, 
respectively. In the second expression S - 1 has been replaced by a quantity specified by the 
aerosol number density, N, its mean radius, R, and the temperature gradient d T / d x  normal 
to the wall at the surface of the tube (Clement, 1987). All spatially dependent quantities are 
evaluated at the surface. 
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With the neglect of 6a and any aerosol current at the wall the first term on the RHS of 
equation (27) reduces to the previous result (Clement and Julien Dolias, 1987) 

d 1 [- pep -]dT 
dz (P,,+ Pa) - 1 + Cn, ~_ P'e(T) + L-(T~ J-d-z ' ~34) 

which can easily be integrated using equation (30) to obtain changes in density as a function 
of temperature, i.e. 

1 F p(p 
, o , - p o , -  (35) 

Here, the density p and the surface condensation number Cn~ are taken at some 
representative bulk temperature, e.g. ½(T~ + TI). 

The size of the final term in equation (27) depends upon the physics of the situation which 
determines dpg/dz. In terms of the total pressure p, the gas density is, assuming an ideal gas 
law, 

_ IJgPg _ #o ~(p_pve(T)), (36) 
Pg R~ T R G 7 

where #g is the molar mass of the gas, Po and Pve the gas and equilibrium vapour pressures 
respectively, and R~ the gas constant. From this expression, and using an ideal gas law for 
the vapour density, 

1 dp. 1 five(T) 
podT T p-p,,e(T) 

1 1 #,Poe] !aoP've (37) 
- 1 +  # ~ P o l  #. Pg' 

where #~ is the molar mass of the vapour. It is therefore possible to east equation (27) in the 
form of a differential equation in T: 

l+)'a [ LL{TT) P,ve(T ) PCP ] + Pa) - -  . . } - _ _  

d(P  1 + On,- aa L L(T ) 

L T \  U,P,, I~ Po ] L( Tw) 1 + Cn~- 6 a " 

With a knowledge of Cn, and 2 a, equation (38) can be integrated to determine the aerosol 
density change along the path from an initial temperature T~ to a final temperature T I. 

3. EXAMPLE CALCULATIONS 

The integration of equation (38) is easy to perform numerically with backward Euler 
extrapolation over a temperature step which is small enough such that the results do not 
depend upon its size. Calculations have been performed for water-vapour/air and sodfum- 
vapour/argon mixtures using the data specified in Appendix A. 

Any differences between the results of integrating equations (38) and (34) arise from a 
feedback from the vapour and aerosol already present in the mixture, corresponding to the 
second term on the RHS of equation (38). This term tends to enhance aerosol growth for a 
cooling case, and to reduce it in the case of heating, relative to the results of equation (34). 
This is shown clearly in Fig. 2 which gives the final aerosol densities obtained, starting with 
Pal = 0, for a heating and a cooling case of a saturated water-vapour/air mixture. Note that 
as maximum densities are being considered here, it is assumed that the mixture reaches the 
temperature of the walls before emerging from the tube. Also, it is assumed that the 
boundary layers are saturated, and that no aerosol is lost by deposition onto the walls, i.e. 
2a = 0. Although easily calculable and for this reason attractive, the expression in equation 
(34) does not yield a result very close to the exact behaviour for this mixture (shown as a 
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Fig. 2. Exact (solid lines) and approximate (dashed lines) increases p, in water aerosol density on 
heating a well-mixed water-vapour/air mixture at 1 atm pressure from I0°C to Tw (circles) and 

cooling from 90°C to Tw (crosses). 

continuous line) for all choices of initial and final temperatures. However, for a sodium/ 
argon mixture similar example calculations display much closer agreement, as shown in 
Fig. 3. 

The behaviour of p,f 'for different wall temperatures in the heating case is explained in 
terms of competing effects. The rise in temperature of the mixture tends to thin out the 
aerosol as the carrier gas expands; against this has to be set the increased rate of evaporation 
into the flow from the walls for larger temperature differences. This can be seen in another 
way by considering the evolution of po with temperature along a pipe, an example of which is 
given in Fig. 4. The increase of mass of airborne water in this case is reflected in the plot of 
loading La, which is defined as 

L# _ po+p~,(r)  
po(T ) (39) 

This quantity rises approximately exponentially. 

4. DISCUSSION 

The results make it clear that it is physically possible to produce quite dense aerosols by 
heating or cooling a saturated vapour, especially for large coolings in the water example. The 
densities that have been calculated, however, are upper limits to those which would be 
produced in less than ideal experimental conditions. Unless the tube is very long, it is 
unlikely that the mixture would emerge from it with a bulk temperature equal to that of the 
walls. This poses no difficulty for the model, and only requires a different upper limit to the 
integration of equation (33), for instance. The experimental results are more likely to differ 
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Fig. 4. Evolution of water aerosol density p, and loading due to heating of a saturated water- 
vapour/air mixture, initially at IO°C, in a flow along a pipe with walls at 90°C. 

from the predictions given above due to deviations of the vapour density in the boundary 
layers from saturation. An exact theoretical description of the development of such 
deviations would have to incorporate the dynamics of fluid exchange between the boundary 
layer and the bulk flow, as well as droplet growth kinetics to determine/~ in equation (33). 
The essential ingredient of such a treatment would be the timeseale of residence of a fluid 
packet within the boundary layer before ejection into the main flow, but such compheations 
are beyond the scope of the simple picture being drawn here. 

The calculations described above have neglected aerosol deposition upon the walls, in 
accordance with the expressed intention to predict maximum aerosol densities. If it is desired 
to extend the model to include the effects of turbulent or thermophoretic deposition then it 
would be necessary to estimate the parameter 2a. 



Max/mum aerosol densities from evaporation-condensation processes 301 

5. CONVECTIVE FLOW SITUATIONS 

It is instructive to apply the aerosol growth model to convective flow situations which 
develop within the cover gas space. A passage of a packet of gas/vapour mixture over the hot 
sodium pool is analogous to the pipe flow situation considered in this paper, except that the 
packet is in contact with the liquid surface only over a portion of its surface. Consider an 
incremental slice of the packet, perpendicular to the overall flow direction, with a perimeter l 
and length dz. Vapour enters diffusively only through a portion of the area ldz; that part 
which contacts the hot pool. To a first approximation it is possible to neglect the loss of 
vapour through the remaining portion as the packet warms. This remaining portion resides 
in the turbulently mixed region of the cavity, where gradients of concentration and 
temperature are small. The density of aerosol in the packet increases according to equation 
(38), where 2= is largely due to a gravitationally settling aerosol current. The temperature to 
which the packet is heated is determined by the fluid dynamics of free convection. It is then 
carried away as a thermal plume into the bulk mixture. Similar cooling processes occur on 
the roof of the cover gas space, which also result in aerosol formation. 

This picture of the mechanism of loading the cover space with aerosol can provide an 
estimate of the number of circuits of the cavity taken by a particular droplet before falling 
out. This in turn can give an indication of the distribution of aerosol density within the 
cavity. Figure 5 shows the maximum fractional increase in aerosol density to be expected 
from one passage of a packet of gas close to the surface of a sodium pool at temperature T, 
with a roof temperature T, of 120°C. Steady state bulk aerosol densities as a function of T, 
are taken from Japanese experimental work (Himeno and Takahashi, 1978). The boundary 
layer is assumed to be saturated. The calculations are for an initial packet temperature of 
Tb -- el2, and a final temperature of Tb + el2, using two typical values of e. Tb is the average 
bulk temperature and is determined (Clement, 1985) by the relation: 

~(rb) = ½(~(T,) + ~(T,)), (40) 
where 

?,(T) = T +  L(T): ce(T) (41) 
Cp 

At the wall and roof 
- k V ¢  = q,o,, ( 42 )  

where qtot is the total heat transfer rate due to conduction and evaporation/condensation 
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Fig. 5. The maximum fractional increase in sodium aerosol density achieved on heating a packet of a 
saturated mixture of sodium-vapour/~gon from a temperature ~-~/2 to T~+8/2. ~ is the 
convective mean temperature for each pool temperature T,, with a roof temperature of 120°C. The 

bulk aerosol densities are taken from Himeno and Takahashi (1978). 
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between the pool  and  the roof. Equa t ions  (40)-(42) are not  general  relat ions,  but  hold  for 
this case since the Lewis number  for sod ium-v a pou r  in a rgon is close to unity. 

The t empera tu re  difference e would  increase as Ts increases, so that  a more  accurate  
t rea tment  would  p roduce  a plot  flatter than  those shown in Fig. 5. A greater  accuracy in the 
cons idera t ion  of this p rob lem is unnecessary  however,  since it is clear  that  the bulk aerosol  
densi ty  in the cavi ty  is insensitive to a passage of a const i tuent  packet  of  mixture  close to the 
heated pool.  A b o u t  10-50 such passages are  required to grow aerosol  in the packet  to the 
observed s teady state density. 

These explicit  ca lcula t ions  confi rm a c o m m o n  supposi t ion;  that  aerosol  growth  can be 
averaged  out  over  the cover  gas cavity (due to the fast tu rbulen t  mixing) and  smoo thed  out  
over  t ime (due to the small  change possible  from a pass over  the pool). Aerosol  genera ted  by 
evapo ra t i on / condensa t i on  in the b o u n d a r y  layer  above  a hot  sod ium pool  will pass into the 
bulk cavi ty  vir tual ly  undeple ted  by immedia te  fallout.  

6. C O N C L U S I O N S  

A mode l  of the genera t ion  of  an aerosol  densi ty  in well-mixed fluid flow s i tua t ions  close to 
heated or  cooled l iquid surfaces has been presented.  The evolu t ion  proceeds  s imply by 
solut ion of  the coupled  equat ions  of  hea t  and  mass  transfer. Cer ta in  ideal condi t ions  a l low a 
ca lcula t ion  of  the m a x i m u m  possible  aerosol  densi ty  generated.  The most  i m p o r t a n t  of  these 
condi t ions  is the sa tu ra t ion  of  the b o u n d a r y  layer  between the wel l -mixed bu lk  flow and  the 
walls. A bet ter  under s t and ing  of the deve lopment  of  devia t ions  f rom sa tu ra t ion  would  be 
requi red  in o rde r  to calculate  realist ic genera t ion  rates of  aerosol  in pipe flows, bu t  ideal  case 
calcula t ions  have been presented  which give upper  l imits to these rates  for var ious  
condi t ions .  

Convect ive  flow in the fast reactor  cover  gas space has been cons idered  in terms of  the 
passage of  packets  of  a rgon  gas over  a hot  sod ium pool ,  dur ing  which they are  hea ted  
th rough  a small  t empera tu re  difference. Calcu la ted  m a x i m u m  densities of sod ium aerosol  
genera ted  in such packets  provide  lower  l imits to the n u m b e r  of  circuits a r o u n d  the cavi ty  
made  by a d rop le t  before growing sufficiently to fall out. This number  is fairly large for a 
range of  typical  sod ium pool  t empera tu res  suggesting tha t  aerosol  g rowth  can indeed be 
viewed as being averaged  out  over  the whole cavity. 
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A P P E N D I X  A 

Water-vapour/air data: summarized in Barrett and Clement (1985) 
Sodium-vapour/argon data: (T in Kelvin) 
Latent heat: L = 4.1993 x 106  - 985.58 T J kg- 1 
Equilibrium vapour pressure: P~e = 1.01325 x 10 s 

( - -  12818 ) 
xexp~ T 0.5 In T+ 14.6306 Pa 

Specific heat capacities: cpg = 521 J kg- 1 K- 1 
c w = 900 J kg -1K-1 

Equilibrium vapour density: P~e = 103  exp ( - 1/z) kg m- 3 
z = 1.91711 x 10- ~ T 2 + 8.4563 x 10- s T -  7.3053 x 10- 4 

Sodium-vapour diffusion D = 7.215 x 10- 9 (T - 149) 3/2 m 2 s - 
coeflieient (at 1 atm. pressure) 
Thermal conductivity k -~ kg = 2.378 x 10- a + 5.561 x 10- s T-- 1.558 x 10- s T 2 W m - t K - 

These fits are sufficient for the range of temperatures relevant to the cover gas space. 


