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Abstract—The coupled equations of heat and mass transfer are used to develop a model of aerosol
generation in fluid flow over liquid surfaces. Maximum aeroso! densities achieved in turbulent flow of an
initially saturated gas/vapour mixture along a heated or cooled pipe are calculated for water-vapour/air
and for sodium-vapour/argon. The model is also applied to flows near the heated surface in free
convective situations. An analysis of an experiment in which sodium aerosols were generated in a cavity
over a hot sodium pool indicates that the droplets which formed grew by passing many times through the
boundary layer over the pool.

NOMENCLATURE

A Cross-sectional area of pipe

c, Saturated vapour concentration

¢, Specific heat at constant pressure

¢, Mean specific heat of mixture

Cn, Surface condensation number

dS Element of surface area

dV Volume element

Vapour-gas diffusivity .

Specific enthalpy

Diffusive aerosol current relative to gas
Diffusive vapour current relative to gas
Thermal conductivity of vapour/gas mixture
Perimeter of pipe

Latent heat of vaporization

Loading

Aerosol growth rate per unit volume
Outward normal from surface

Aerosol number density

Conductive heat current

Mean radius of acrosol droplets
Saturation

Time

Temperature of bulk flow

Roof temperature of cover gas space
Temperature of sodium pool

Velocity

Distance normal to wall

Distance along pipe

Dimensionless parameter [equation (33)]
Dimensionless ratio [equation (29)]
Temperature difference between rising and falling currents in the cover gas space
Dimensionless ratio [equation (28)]
Heat transfer quantity [equation (41)]
Total density
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Subscripts

Pertaining to aerosol
Pertaining to equilibrium
Pertaining to gas
Pertaining to vapour
Pertaining to wall

Tewan

Superscript
Derivative with respect to T’
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1. INTRODUCTION

There are two main areas of nuclear power technology where an understanding of aerosol
physics can contribute. Firstly, in the design of the fast reactor cover gas space, where a
sodium aerosol can develop, and secondly for studying the consequences of a release of
radioactive material as aerosol in a hypothetical accident. Sodium aerosol in the cover gas
space can affect the heat transfer properties of the cavity and can freeze in deposits on the
roof. It is important to understand these phenomena, not least for reasons of safety. As for
accident studies the interest lies in the processes of formation and removal of possibly
dangerous suspended particles in a reactor containment atmosphere.

In practical cases the formation and growth of aerosols is complicated, although the basic
physics is clear. The complications arise from the coupling together of several distinct
processes: fluid dynamics, heat transfer and droplet growth. Fluid flow has an influence
upon heat dissipation, which in turn is linked with mass transfer and aerosol growth
dynamics. These latter processes can affect the characteristics of the flow, especially in cases
of free convection. In this paper we simplify the problem by imposing a flow. We then show
how maximum aerosol densities resulting from heat and mass transfer into or out of the flow
can be calculated.

Much work has been done on the relevance to aerosol physics of the coupling between
heat and mass transfer (Clement, 1985). There have, however, been few experiments carried
out expressly to test these predictions. An exception is a study currently being performed at
Harwell which is concerned with the behaviour of aerosol in a turbulent flow along a vertical
pipe with cooled walls. This is a situation where to a first approximation the fluid flow is not
coupled to the aerosol physics, and can be taken to be a well-mixed turbulent flow (for high
enough Reynolds number) in the bulk, and a boundary layer at the wall through which heat
and mass pass out of the bulk flow. The physics of the system, and that for the analogous
heating case in which heat and mass pass into the flow are shown in Fig. 1. In the next
section, we develop a model to describe how aerosol density changes in the flow are related
to the temperature changes. In Section 3 we perform some example calculations for aerosols
formed by heating and cooling water-vapour/air and sodium-vapour/argon mixtures. The
results are discussed in Section 4. In Section 5 we apply the model to free flow over an open
pool in a convective situation. Finally, in Section 6, we give our conclusions on the results
obtained.

2. THE MODEL

The basic conservation equations for the separate phases of the three component
vapour—gas—aerosol system and the total enthalpy are:

op

L4 V-(p¥) =0, (M)
ap, . .
6t +V'(puvg)+v'.ls = —my, (2)
ap, . ,
E+V'(pavg)+v'1a =m,, (3)
0
a(pghg+pvhv+pahn)+v'(q +pghgvg+puhvvu+pahava) =0. (4)

The subscripts g, v, and a of the density p, the velocity v, and the specific enthalpy h, refer to
the gas, vapour, and aerosol respectively. The aerosol growth rate, or mass transfer rate per
unit volume from the vapour to the aerosol is m,, and the currents j;,, j, and q are defined
below.

In accordance with common practice in fluid problems, any sources to the enthalpy from
friction have been neglected in equation (4). The equation then applies to pipe flow even
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Fig. 1. Changes in the total acrosol density from p,, to p,, produced by a well-mixed flow being (a)
heated by a hot pool and (b) cooled at a wall.

when the pressure is changing moderately, the energy from this going into changes in the
bulk velocity, v.
In equation (2), the vapour current has been written as

PV = Pu¥y +j.n (5)

where j, is the vapour current relative to the gas.
Similarly, the aerosol current is written as

PaVa = pavq+jm (6)

where j, is the aerosol current relative to the gas.
Finally, the conductive heat current is

q=—kVT. )

Consider the steady state flow through a pipe of cross-sectional area A. The time
derivatives vanish in equations (1)—(4) and the equations can be integrated over a volume
element of length dz along the flow, obtaining, for example

[V-(pyv,)dV ={dSp,v,-n = dz(—%(pgng), ®)

where the outward normal n is taken to be in the gas flow direction in which there is a
uniform velocity v,. The equations are averaged over possible realizations of the flow which
is taken to be turbulent. It is assumed that the streamwise turbulent fluctuations in flow
velocity are much smaller than the mean velocity along the pipe, so that the contribution of
fluctuations to the integrals can be neglected.

It is assumed that for a turbulent flow in the pipe the densities etc. within the bulk flow are
constant across the cross-section, outside the boundary layers. Only the contribution of the
vapour current against the wall is important, i.e.

§is-dS =lj,dz, ®

where [ is the perimeter of the area A and j, is the magnitude of j,. A positive j, then indicates
a loss of vapour to the wall and condensation. Since the vapour current j, is only required at
the wall, the effects of turbulent transport are irrelevant and j, is given by (Clement, 1985)

o = —D(va ~ ﬁVp,), (10)
Py

where D is the vapour-gas molecular diffusivity.
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Under these particular conditions, equations (1)—(3) become

d

d;(pgng)=0, 41])
d : , 4
a—z(pvqu) = _l.’s _Amva ”2)
d . ,
&(pang) = _l]a+ Amv' (13)

Likewise the enthalpy equation (4) becomes
d
a;(pghgng + pvhvng + pahang) = - lhijs - lhawja - lq’ (14)

where the subscript w denotes wall value.
The enthalpies are functions of temperature and pressure and if the temperature is
changing along the tube, then for the flow conditions considered here
dhy _ 4T
dz = "dz’
etc., where c,, is the specific heat at constant pressure, and T is the bulk fiow temperature.
Using equations (11)—(13), equation (14) can be rewritten as
ar
dz

where the mean specific heat ¢, is given by

(15)

pépng = ljs(hv_huw)+ljn(hn—'haw)+Amu(hv—hn)_lq’ (16)

PCp = PyCpg+ PyCpy+ PaCpa- (17

The first two terms on the right-hand side of equation (16) are correction terms arising
from any change in temperature of the vapour or aerosol in going from the bulk flow to the
wall. They will generally be small in comparison to the conductive flux (fourth term) and the
aerosol condensation term (third term), which is specified by the latent heat of vaporization

L(T)=h,—h,. (18)
Using the definitions of h, etc., equation (16) can be rewritten as

T
pépvﬂAz_Z = ALmv'—lq+l(T_ Tw)(cpvjs+cpaja)’ (19)

where T, is the wall temperature.
The heat current at the wall can be related to the mass current using a surface
condensation number (Clement, 1985)

Cn, = g/(L(T,,) ji)- (20)
From equation (11), the rate of change of p, is related to that of Ay, by

d 1dp, v
dz(Av”) ngp, iz’ (21)
and so equations (12) and (13) reduce to
dp, p,dp, . .
v _PoZPe ) o _ij, — Am,, 22
vﬂA( dZ pg dZ .’s mv ( )

dp, p.dp, , ,
A a_Ta_"8 )= ~j. + Am,. 23
% ( dz p, dz b ¢ (23)
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Next m, can be eliminated between equations (22) and (23) and between equations (19) and
(22) to obtain

d (potpa)dp, |
A [a(pu +Pa)— T dz ] 1(js+Ja), (24)
and
| LD 406, G~ L2 | LT O~ LD = T b )

=- IL(Tw)]s(l + Cns)+ l(T_ Tw)cpa(ja +js)’ (25)

where equation (20) has been used and also the relation between the latent heats at different
temperatures:

L(T) - L(Tw) = (cpu _cpa)(T_ Tw) (26)

Finally, the ratio of equation (24) to (25) provides an expression for the rates of change
along the path:

dp, _dT
LT+ Cn— 8,1 Lo+ = (14 /L.)[L(T) < Cva]
1 dpg
+p~ {L(TW)(p,+ pa)[1+ Cny— 3,1 L(T)(1 + 4,)p, }, 27
[4
where
)'a =ja/js’ (28)
and ¢, is a small correction term that can often be neglected:
611 = cpa(l + A’a)(T— Tw)/L(Tw) (29)

If it is assumed that the vapour density in the main flow is kept close to saturation by
aerosol formation or evaporation, p, takes on its equilibrium value, p,.(T), so that

dp,
dz

d
= h(DS- (0)

If this were true for the boundary layer as well, then the surface condensation number
would be given by
k(1 —c(T))
DLpc,(T)’
where k is the thermal conductivity of the mixture and the equilibrium vapour concentration
is ‘

Cn, = (31)

Ce(T) = poelT)/(Poe(T) + p,), (32)

i.e. the vapour concentration is defined as the mass fraction of aerosol. The derivative of ¢
with respect to T is taken at constant pressure.

Otherwise, an amended value should be used (Clement, 1987), corresponding to a
maximum supersaturation (S — 1) in the boundary layer

e

Cn(l) Cny(1)
(t+a(S—1¥) 14 1 crdry’
(4nNR)* ¢, dx

Cny(8) = (33)

where a = (c; ¢,)¥/c, =~ 1 and the plus and minus signs refer to the cooling and heating cases,
respectively. In the second expression S — 1 has been replaced by a quantity specified by the
aerosol number density, N, its mean radius, R, and the temperature gradient d7/dx normal
to the wall at the surface of the tube (Clement, 1987). All spatially dependent quantities are
evaluated at the surface.
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With the neglect of §, and any aerosol current at the wall the first term on the RHS of
equation (27) reduces to the previous result (Clement and Julien Dolias, 1987)

d LT
S et pa) = |y P2 (L X
az (Pet ) 1+Cns[p ( HL(T)sz 34)

which can easily be integrated using equation (30) to obtain changes in density as a function
of temperature, i.c.

paf_pni = l:—Cns(pve(Tf)_pve(ﬂ))'i-“EEP—(Tf—711)] (35)

1+ Cn;

Here, the density p and the surface condensation number Cn, are taken at some
representative bulk temperature, e.g. 3(7;+ T).

The size of the final term in equation (27) depends upon the physics of the situation which
determines dp,/dz. In terms of the total pressure p, the gas density is, assuming an ideal gas
law,

_ Mgl Ky

pg - RGT - RG T(p_pve(T))’ (36)

where y, is the molar mass of the gas, p, and p,, the gas and equilibrium vapour pressures
respectively, and R the gas constant. From this expression, and using an ideal gas law for
the vapour density,

Idp, 1 p(T)

2, dT T p—p(T)
1 ’
_ _w[l_}_/‘gpve:l_l_‘g_p_gg’ 37
T HoPy Ho Pyg
where u, is the molar mass of the vapour. It is therefore possible to cast equation (27) in the

form of a differential equation in T

d 144, L(T) |, P,
dT(pv+pa) - 1+Cns_5a [L(Tw)pve(T)+ L(Tw)

1 HeP By Py L(T) (1+4,)p
_ - 1 grve _i_e a_ a ve . 38
[T( +u,,pv>+uv oy [Pt P LTy 14 Cn, o, 9

With a knowledge of Cn, and 4,, equation (38) can be integrated to determine the aerosol
density change along the path from an initial temperature T; to a final temperature 7.

3. EXAMPLE CALCULATIONS

The integration of equation (38) is easy to perform numerically with backward Euler
extrapolation over a temperature step which is small enough such that the results do not
depend upon its size. Calculations have been performed for water-vapour/air and sodium-
vapour/argon mixtures using the data specified in Appendix A.

Any differences between the results of integrating equations (38) and (34) arise from a
feedback from the vapour and aerosol already present in the mixture, corresponding to the
second term on the RHS of equation (38). This term tends to enhance aerosol growth for a
cooling case, and to reduce it in the case of heating, relative to the results of equation (34).
This is shown clearly in Fig. 2 which gives the final aerosol densities obtained, starting with
pai = 0, for a heating and a cooling case of a saturated water-vapour/air mixture. Note that
as maximum densities are being considered here, it is assumed that the mixture reaches the
temperature of the walls before emerging from the tube. Also, it is assumed that the
boundary layers are saturated, and that no aerosol is lost by deposition onto the walls, i.e.
4, = 0. Although easily calculable and for this reason attractive, the expression in equation
(34) does not yield a result very close to the exact behaviour for this mixture (shown as a
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Fig. 2. Exact (solid lines) and approximate (dashed lines) increases p, in water aerosol density on
heating a well-mixed water-vapour/air mixture at 1 atm pressure from 10°C to T, (circles) and
cooling from 90°C to T, (crosses).

continuous line) for all choices of initial and final temperatures. However, for a sodium/
argon mixture similar example calculations display much closer agreement, as shown in
Fig. 3.

The behaviour of p,, for different wall temperatures in the heating case is explained in
terms of competing effects. The rise in temperature of the mixture tends to thin out the
aerosol as the carrier gas expands; against this has to be set the increased rate of evaporation
into the flow from the walls for larger temperature differences. This can be seen in another
way by considering the evolution of p, with temperature along a pipe, an example of which is
given in Fig. 4. The increase of mass of airborne water in this case is reflected in the plot of
loading .#, which is defined as

Pat+ Pue(T)
p=te T Ten ]
po(T)

This quantity rises approximately exponentially.

(39)

4. DISCUSSION

The results make it clear that it is physically possible to produce quite dense aerosols by
heating or cooling a saturated vapour, especially for large coolings in the water example. The
densities that have been calculated, however, are upper limits to those which would be
produced in less than ideal experimental conditions. Unless the tube is very long, it is
unlikely that the mixture would emerge from it with a bulk temperature equal to that of the
walls. This poses no difficulty for the model, and only requires a different upper limit to the
integration of equation (33), for instance. The experimental results are more likely to differ
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Fig. 3. As for Fig. 2, but for sodium-vapour/argon. The initial temperatures for the heating (O) and
cooling ( x ) cases are 300 and 600°C, respectively.
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Fig. 4. Evolution of water aerosol density p, and loading due to heating of a saturated water-
vapour/air mixture, initially at 10°C, in a flow along a pipe with walls at 90°C.

from the predictions given above due to deviations of the vapour density in the boundary
layers from saturation. An exact theoretical description of the development of such
deviations would have to incorporate the dynamics of fluid exchange between the boundary
layer and the bulk flow, as well as droplet growth kinetics to determine R in equation (33).
The essential ingredient of such a treatment would be the timescale of residence of a fluid
packet within the boundary layer before ejection into the main flow, but such complications
are beyond the scope of the simple picture being drawn here.

The calculations described above have neglected aerosol deposition upon the walls, in
accordance with the expressed intention to predict maximum aerosol densities. If it is desired
to extend the model to include the effects of turbulent or thermophoretic deposition then it
would be necessary to estimate the parameter A,.
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5. CONVECTIVE FLOW SITUATIONS

It is instructive to apply the aerosol growth model to convective flow situations which
develop within the cover gas space. A passage of a packet of gas/vapour mixture over the hot
sodium pool is analogous to the pipe flow situation considered in this paper, except that the
packet is in contact with the liquid surface only over a portion of its surface. Consider an
incremental slice of the packet, perpendicular to the overall flow direction, with a perimeter /
and length dz. Vapour enters diffusively only through a portion of the area /dz; that part
which contacts the hot pool. To a first approximation it is possible to neglect the loss of
vapour through the remaining portion as the packet warms. This remaining portion resides
in the turbulently mixed region of the cavity, where gradients of concentration and
temperature are small. The density of aerosol in the packet increases according to equation
(38), where 1, is largely due to a gravitationally settling aerosol current. The temperature to
which the packet is heated is determined by the fluid dynamics of free convection. It is then
carried away as a thermal plume into the bulk mixture. Similar cooling processes occur on
the roof of the cover gas space, which also result in aerosol formation.

This picture of the mechanism of loading the cover space with aerosol can provide an
estimate of the number of circuits of the cavity taken by a particular droplet before falling
out. This in turn can give an indication of the distribution of aerosol density within the
cavity. Figure 5 shows the maximum fractional increase in aerosol density to be expected
from one passage of a packet of gas close to the surface of a sodium pool at temperature T,
with a roof temperature 7, of 120°C. Steady state bulk aerosol densities as a function of T,
are taken from Japanese experimental work (Himeno and Takahashi, 1978). The boundary
layer is assumed to be saturated. The calculations are for an initial packet temperature of
T, —e¢/2, and a final temperature of T, + &/2, using two typical values of &. T}, is the average
bulk temperature and is determined (Clement, 1985) by the relation:

¢(Ty) = 3(&(T,) + &(T)), (40)
where
{N=T+ L(L;‘(—T—) (a1
At the wall and roof !
- kVé = Gio1» (42)

where g, is the total heat transfer rate due to conduction and evaporation/condensation
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Fig. 5. The maximum fractional increase in sodium aerosol density achieved on heating a packet of a

saturated mixture of sodium-vapour/argon from a temperature T,—¢/2 to T,+&/2. T, is the

convective mean temperature for each pool temperature T, with a roof temperature of 120°C. The
bulk aerosol densities are taken from Himeno and Takahashi (1978).
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between the pool and the roof. Equations (40)~(42) are not general relations, but hold for
this case since the Lewis number for sodium-vapour in argon is close to unity.

The temperature difference ¢ would increase as T, increases, so that a more accurate
treatment would produce a plot flatter than those shown in Fig. 5. A greater accuracy in the
consideration of this problem is unnecessary however, since it is clear that the bulk aerosol
density in the cavity is insensitive to a passage of a constituent packet of mixture close to the
heated pool. About 10-50 such passages are required to grow aerosol in the packet to the
observed steady state density.

These explicit calculations confirm a common supposition; that aerosol growth can be
averaged out over the cover gas cavity (due to the fast turbulent mixing) and smoothed out
over time (due to the small change possible from a pass over the pool). Aerosol generated by
evaporation/condensation in the boundary layer above a hot sodium pool will pass into the
bulk cavity virtually undepleted by immediate fallout.

6. CONCLUSIONS

A model of the generation of an aerosol density in well-mixed fluid flow situations close to
heated or cooled liquid surfaces has been presented. The evolution proceeds simply by
solution of the coupled equations of heat and mass transfer. Certain ideal conditions allow a
calculation of the maximum possible aerosol density generated. The most important of these
conditions is the saturation of the boundary layer between the well-mixed bulk flow and the
walls. A better understanding of the development of deviations from saturation would be
required in order to calculate realistic generation rates of acrosol in pipe flows, but ideal case
calculations have been presented which give upper limits to these rates for various
conditions.

Convective flow in the fast reactor cover gas space has been considered in terms of the
passage of packets of argon gas over a hot sodium pool, during which they are heated
through a small temperature difference. Calculated maximum densities of sodium aerosol
generated in such packets provide lower limits to the number of circuits around the cavity
made by a droplet before growing sufficiently to fall out. This number is fairly large for a
range of typical sodium pool temperatures suggesting that aerosol growth can indeed be
viewed as being averaged out over the whole cavity.
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APPENDIX A

Water-vapour/air data: summarized in Barrett and Clement (1985)
Sodium-vapour/argon data: (T in Kelvin)

Latent heat: L =41993 x 1098558 T Jkg !
Equilibrium vapour pressure: Do = 101325 x 10°

— 12818
X exp T --0.5In T+ 14.6306 ) Pa

Specific heat capacities: Cpg=521Jkg 'K™!
Cp=900Jkg 'K
Equilibrium vapour density: p,e = 10%exp(—1/z)kgm ™3
z=191711 x 1078 T2 4+ 8.4563 x 10~ 5 T'--7.3053 x 10™*
Sodium-vapour diffusion D =17215x10"°(T—149)*2m?s~!
coefficient (at 1 atm. pressure)
Thermal conductivity k~k,=2378x107*+5561x10"* T—1.558 x 10" T*Wm™ 'K ™!

These fits are sufficient for the range of temperatures relevant to the cover gas space.



