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Abstract--A simplified model is constructed for an aerosol interacting with a vapour-gas mixture in 
a well-mixed cavity. An accurate form is deduced for the initial equilibration timescale between the 
aerosol and the surrounding mixture, and the corresponding supersaturation is obtained. Analytic 
estimates are also given for the timescales of gravitational settling, Ostwald ripening from the Kelvin 
effect, and redistribution of water mass in a hygroscopic salt aerosol. 

Calculations are performed for a water aerosol at 20°C and 100°C, and the effect on the 
gravitational fallout is investigated of redistribution due to an aerosol solute content and of radiative 
redistribution. The solute effect maintains a disperse aerosol size distribution and enhances settling 
to a moderate but significant extent. For radiative cooling alone, the redistribution hardly affects the 
settling at 100°C, although it also maintains a wide size distribution. However, when coupled with 
heating to maintain a constant temperature, the radiative redistribution is shown to be capable of 
causing a rapid reduction in the mass of the airborne aerosol. 
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constant in growth rate equation 
area of base of containment 
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mean specific heat at constant pressure 
salt volumetric concentration 
condensation number 
vapour-gas diffusivity 
function of R 
gravitational acceleration 
dimensionless radiative growth function 
coefficient of R specifying G(R) for large drops 
cavity height 
van't Hoff factor 
thermal conductivity 
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latent heat of vaporization 
Lewis number, Le =k/(p%D) 
mass of solute in droplet 
total local aerosol condensation rate 
aerosol number density 
total aerosol number density 
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external heat transfer rate into cavity 
total radiative heat flux from droplet 
droplet radius 
droplet growth rate 
parameter of log-normal distribution 
intermediate radius 
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nth moment of the aerosol size distribution 
radius of solute mass 
Kelvin radius (21a~/(ptR~cT)) 
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Ostwald ripening timescale 
solute redistributive timescale 
temperature, 
difference between vapour concentration and its equilibrium value 
growth velocity ( = / ~  
volume 
partial derivative of R with respect to R 0 
coefficient in exponent  (see equation (10)) 
coefficient giving temperature derivative of p~(T) 
gas viscosity 
surface tension for Kelvin radius 
numerical factor in Ostwald ripening solution 
gravitational settling loss rate 
constant specifying R dependence of 2(R) 
(subscripted) molecular weight 
total density 
width parameter in log-normal distribution 
temperature difference specifying radiative cooling 

Subscripts 
e pertaining to equilibrium 
g pertaining to gas 
i pertaining to initial value for solute effect 

d pertaining to liquid 
s pertaining to solute 
v pertaining to vapour 
0 pertaining to initial value 

oc~ pertaining to asymptotic value 

Superscripts 
p derivative with respect to T 

average over the size distribution 

1. I N T R O D U C T I O N  

Water clouds are common in nature and aerosols with large water contents could be formed 
in the containment of a pressurized water reactor (PWR) following a possible accident, as 
shown in some large-scale experiments {Sch6ck et  al., 1988). Water droplets can grow or 
evaporate not only as a result of supersaturation in the surrounding vapour, but also 
through their size (Kelvin effect), salt content (solute effect) and their interaction with 
radiation (see e.g. Manton, 1983). Even when a water cloud is in overall equilibrium with the 
medium, all these effects can cause the redistribution of water mass between cloud droplets 
(Barrett and Clement, 1988). We have examined in some detail the redistribution due to the 
interaction with radiation (Barrett and Clement, 1990). Here, we extend the examination to 
the other mechanisms, particularly the solute effect, as well as calculating the effect of the 
redistribution on the gravitational settling rate of the aerosol. 

In section 2 we describe theoretically vapour-aerosol interactions for an idealized 
well-mixed cavity which can exchange heat with its surroundings, but whose only mechan- 
ism for loss of vapour-aerosol mass is gravitational settling. The basic idea is to calculate 
how an aerosol size distribution evolves with time, and the necessary data for actual 
calculations are given for a water aerosol at 20°C and 100°C. The main theoretical 
development is to derive precisely the timescales for fast transients which bring the 
aerosol-vapour-gas system into approximate equilibrium and the resulting equilibrium 
supersaturations. Slower redistributive processes then take place and we show how the 
consequent changes in supersaturation are given by mass conservation and moments of the 
size distribution. A method is given for calculating these moments using the original size 
distribution. 

In section 3 we give some results for each of the redistributive mechanisms with an 
emphasis on the timescales involved. A simple half-life is given for gravitational settling and 
explicit timescales are obtained for Ostwald ripening (Kelvin effect) and for the solute effect. 
Redistribution will take place with a hygroscopic aerosol when circumstances such as 
a sudden injection of steam allow pure growth of droplets first with a saturation above its 
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equilibrium value (Clement, 1988b). In such a case we show that the final equilibrium 
aerosol size distribution preserves a log-normal form of the initial distribution. 

In the radiative case considered in section 3.4 we obtain results for pure radiative cooling, 
when the temperature of the cavity falls, and when radiative cooling is combined with 
internal heating to keep the temperature constant, the main case considered previously 
(Barrett and Clement, 1990). The amount  of aerosol removal by settling is found to depend 
strongly on redistribution only in the second case. In the solute case with removal discussed 
in section 3.5, effects of redistribution are found to occur only when the removal timescale is 
comparable to the redistribution timescale. 

Finally, in section 4 we draw some conclusions from this work, especially regarding 
calculations for water aerosols in PWR containments. 

2. V A P O U R - A E R O S O L  I N T E R A C T I O N S  

The simplified problem that we wish to examine is a cavity volume V with base area Ab 
and height h, containing a uniform mixture of a gas, a condensible vapour at a concentra- 
tion c = pf fp ,  and an aerosol with a size distribution n(R, t), where R is the radius. The only 
aerosol removal mechanism that we include is gravitational settling.* 

First, we write down basic equations for the system, some of which are obtained from 
previous work on droplet growth (Barrett and Clement, 1988) and on aerosol formation 
(Clement, 1985, 1988), although, because of the simplifications made in the problem, they 
can easily be obtained ab initio. In section 2.3 we derive an equation for the supersaturation 
which clearly shows the need to divide the problem into two steps, one of equilibration with 
a short timescale and then one of mass redistribution. It is the latter problem that we are 
mainly interested in here, but, to avoid fast transients, it is necessary to choose carefully the 
initial supersaturation. Some results on the evolution of the aerosol size distribution are 
obtained in section 2.4. 

2.1. Basic equations 

The vapour losses mass to the aerosol at a mass density growth rate, rhv, so that its 
concentration, c, obeys the exact equation (c not necessarily small): 

d_(c= 
- ( 1  - c )  . (1) 

dt p 

Latent heat, L, is released on vapour condensation so that the cavity temperature, T, 
satisfies 

dT  
P~v -d-[ = Lthv + q, (2) 

where ~p is the mean specific heat of the contents and q is an additional source or sink term 
to be chosen later. Any effects of pressure changes resulting from vapour removal or 
temperature change can be included by an appropriate choice of q, but, for most of the 
redistributive cases we consider, pressure changes will not occur or will be negligible. 

The aerosol size distribution satisfies 

t~n 3 
~-~+ ~-~(nR) = - 2 ( R ) n ,  (3) 

where, for gravitational settling from a well-mixed volume V onto a surface Ab with 
h = V/Ab,  the loss rate is given by 

2 p t g R  2 _ 20 R E . (4) 
2 (g )=  9 r/h 

* No vapour loss is allowed, other than to the aerosol, but in some cases we do allow for heat sources or sinks in 
the system. This is necessary to give a realistic treatment of radiative redistribution and removal. 
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A form for/~ which includes the Kelvin effect, the interaction with radiation, and the 
effect of dissolved solute to the lowest order is (Barrett and Clement, 1988) 

A [ R~ bR3~ 1 t~=R+R~,. S-.-I-~+--RT+G(R) , (5} 

where S is the saturation given by 

S= p' =1-+ #v u (6) 
pve(T) #v-(Uv-#,)c ce(T)" 

Here, S is also given in terms of the equilibrium and actual vapour concentrations, c,(T) 
and c and the molecular weights, #. 

A factor Rmi. has been included in the denominator in equation (5) as a reminder that the 
1/R dependence of/~ does not extend to very small R (Barrett and Clement, 1988). With its 
inclusion the following expression for A, valid in the continuum region for growth, must be 
amended. Values of Rmi, are quoted in the next section, but we are mainly interested in 
aerosols with R >/1 #m, so that for the sake of simplicity, Rmi, will be omitted from 
subsequent expressions. From our previous work 

Dppve(T) Cn(1 -co) kT 2 1 
A p:(p-pv~(T))Cn(1-c~)+l p:flLl+Cn(1-ce)'  (7) 

where fl = #v L/Roc the exponent in the Clausius-Clapeyron relation for Pve (T), pv~ is the 
vapour density corresponding to pv,, and the condensation number (Clement, 1985) is 

Cn = k/(LD pc'e (T)). (8) 

The solute term bR3/R 3 arises from the expansion of the vapour pressure change from 
Raoult's law modified by the van't Hoff factor, i (see, for example, Manton (1983)), so 
that b = i#:ps/#~p:. 

R~ is given by the mass of solute in the droplet, 

4 
m~=~np~R a. (9) 

For high concentrations of solute, the full water activity needs to be known to specify the 
vapour pressure (see, for example, Clough et al., 1988; Jokiniemi, 1990). 

The final term, G(R), in equation (5) refers to radiation from the aerosol whose redistribu- 
rive effects we have recently considered (Barrett and Clement, 1990), 

G(R)=flQR/(4nkT2R)=G2R(1 - e x p ( -  aR)), (10) 

where QR is the net radiative heat flux from the droplet, and the final form is that found 
appropriate for water droplets (Roach, 1976; Barrett and Clement, 1990). The parameters 
G 2 and a are specified in the next section. 

The only approximation regarding c and S we have made in equation (7) and make in the 
denominator in equation (6) is to put c=ce and S= 1 in the expressions (# , -# , ) c  and 
p-Sp,e, respectively. This is an extremely accurate approximation in problems involving 
rearrangement, and does not prejudice the application of the theory to situations when the 
vapour concentration is not small (c< 1). 

Finally, in terms of the size distribution, the mass density growth rate of the aerosol is 

f t) dR. (11) rhv =4rip: 

2.2. Data for water 

We have performed calculations for water at 20°C and 100°C, most of the data used being 
given in Table 1. The values quoted were calculated with the value of l for the sticking 
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Table 1. Parameters for water 

Quantity T= 293 K T= 373 K 

A (,ttm) 2 s- 1 120 411 
Rmi n tam 0.20 0.097 
R~ tam 0.00108 0.00071 
b* CsI 0.54 0.54 

CsOH 0.93 0.93 
G2 1.79 x 10 -4 2.28 x 10 -4 

/'0 ( / . tm)-2 S -1  1.2x 10 -4 1.2x 10 -4 

h(m) h(m) 

4npe/(3pc, ) 241,900 6715 
Le 0.841 0.768 
Cn 0.38 0.033 
ct tam- 1 0.3 0.3 
Bt -0.049 -0.0064 
B 2 0.951 0.994 
B3 °C 3.80 x 106 1.05 x 10 ~ 

* Values calculated using, for Csl, i=1.72, ps=4510kgm -3, 
~=259.8; for CsOH, i=2.1, ps=3675 kgm -3, #,= 149.9 (Jokiniemi, 
1990). 
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probabili ty,  SA, of  water molecules. At 20°C a small value of SA would increase Rmi n (Barrett 
and Clement,  1988). For  radiat ion across a small temperature difference, AT, to an 
absorbing surface, we have (Barrett and Clement, 1990): 

G2 = 1.2 x 10 -3 (12) 
T 

The values quoted  in Table 1 correspond to AT= 10°C. 

2.3. Supersaturation and timescales 

We first define various averages of  the aerosol size distr ibution by 

N ( t ) =  f n(R, t)dR, (13) 

QR(t) = f QRn(R, t)dg/N, (14) 

with similar expressions for/~,  R E and R -2 
We now derive an equat ion for u = c-c,(T). F r o m  equat ions (1) and (2) we obtain 

du rhv [ C n ( 1 - c ¢ -  u )+  Le]  1 Le 
dt - p Cn pL Cn q '  (15) 

The next step is to substitute in equat ion (11) for rhv the expression (5) fo r /~  and use 
equat ion  (7) for A. To obtain the result in terms of  u we substitute f rom equat ion (6) for 
S -  1. Equa t ion  (15) for u then becomes 

--=dt - , ~ z ~ N r  C n - O ~ i  u + c c # v - (  - R - - ~  R 

1 Le 
pLCn q. (16) 

The u in the factor C n ( 1 - c , + u )  may  practically always be neglected so that  this 
equat ion is a first order  linear differential equat ion for u with an exponential  equilibration 
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timescale given by 

l C n ( 1 - c ~ ) + l  
tt~ =4nDN[¢ Cn(l -- ce)+ Le ~ 7) 

l 
- , C n ~ l .  

4rcNRk/(p6 o) 

The first form is a more accurate result than a previously deduced timescale (Clement, 
1988) where the second radio did not appear. This previous result applies for Cn>> 1, 
whereas the final form is for Cn ,~ 1, the case for water vapour in air at high temperatures. 
As might be expected in this case where the transmission of latent heat controls the 
condensation process, it is the heat transfer rate, k/p(p, rather than the mass transfer rate, D, 
which gives the equilibration timescale. The timescale is typically much smaller than 
a second; for example for water droplets in air at 2 bar and 100°C and an aerosol mass 

density of 1 gm -3, we have tE=O.O23R3/Rs, where the radii are measured in #m. This 
means that, unless the RHS of equation (16) is chosen initially to vanish, there will be a fast 
transient with the timescale given by equation (17). Following this transient, redistribution 
processes and possible changes in T will lead to a much slower time dependence of all the 
moments occurring in (16), and consequently slow changes in u. 

For the case of a heat loss by radiation from the aerosol only, we have for the source 
term q, 

f - q = - Q ,  n ( g )  d R  = - N Q R  = 4 ~ k r  ~ RG(R)/B. 0 8 )  

The terms in equation (16) containing q and RG(R) now combine and, omitting the 
Kelvin and solute terms, equation (16) can be reduced to 

du+4rcDuN~Le+Cn(1 -c , )  =(1 - c~)(Le- 1)QRN 
dt 1 +Cn(1 -c¢) pL(1 +Cn(1 -c~)) " 

(19) 

It is easy to show that the corresponding 'equilibrium' value of u gives the supersatura- 
tion, S -  1, and growth rate,/~, obtained previously (Barrett and Clement, 1990, equations 
(22) and (23)). 

Another physical case corresponds to the requirement of constant temperature which we 
previously examined (Barrett and Clement, 1990) with a constant amount of vapour plus 
aerosol. This corresponds to q = - L r h ,  and the modifications to equations (15) and (16) are 

d u =  - (1  --c,-u) th* 
dt p 

4rrDNR(1-c.)Cn[- #v-(#,,-#,)ce(_Rr_t bR3R-2 RG(gR))] 
= - - - -  u+ #v \ R R C n ( 1 - c ~ ) + l  [ c, = ~- . 

(20) 

The equilibrating timescale is increased from the value given by the final form in equation 
(17) by a factor Cn-  1 for Cn ,~ 1. The equilibrium corresponds to no mass transfer between 
the aerosol and vapour-gas mixture, i.e. rhv ~0.  

Instead of obtaining equations for u, we could work in terms of the saturation, S, when 
equation (15) is replaced by 

{ [  cc J c e L  cLe-] . c Leq} dS= #, C n ( 1 - c ) + - - ,  m ~ + - - - -  
dt pceCn[#v-(#~-#g)c] 

o (21) 

This equation with q = 0  and c,~ 1 was used to discuss nucleation in a vapour-gas 
mixture (Barrett and Clement, 1991). 
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2.4. Aerosol size distribution and moments 
Starting from an initial size distribution no (Ro, t = 0), a formal solution of equation (3) is 

obtained in the Appendix: 

n :  t t ,n ,f ORo(R, t')) d t ' ] .  no trio) ~ ~ ' ) t  e x p [ -  fo 2(R'(Ro, (22, 

The time dependence of/~ is determined by moments over the distribution at time t: 

fo f (R)=  f(R) n(R)dR/N 

:fodRof(R(Ro, t))no(Ro,exp[-~2(R'(Ro, t'),dt']/N, (23, 

where we have used equation (22) to express the moment as an integral over Ro. This form 
of the integral enables us at all times to use the initial distribution which we take to be 
log-normal: 

R No f l[ln(Ro/Rg)7 2] 1 no( o)=(2~)~-TrlnaseXp~-~L ~ j I~" (24) 

Fixed points for numerical integration in R0 can be chosen once and for all which cover 
the main peak of the distribution. 

Being able to calculate the moments of the distribution, we have a direct way of 
calculating actual changes in u (or S) from mass conservation. From equation (3) we easily 
obtain by multiplying by R 3 and integrating over R: 

4 d -g3 4 -~np:~(NR )=rhv-~rcp:N 2R s . (25) 

We can determine rh, from one or both of equations (1) and (3). For the case q =0, we 
obtain, using equation (15) in equation (25) and integrating, 

u(t)-u(O)= - 1 C n ( 1 - c , ) + L e 4 ~ p :  N~-g(t)_No-~o+N dt,2R3(t,) (26) 
p Cn 3 " 

For the case T= constant, assuming c ~ 1, we use equation (20) in (25) and integrate to 
obtain, 

u(t)--u(O)= -4rtP------£3p [ NRs (t)-N°Ra + N fo' dt' 2RS(t') 1 . (27) 

For large Cn the results are identical, but for Cn << 1 the change in u is formally larger by 
a factor Le/Cn. 

3. CALCULATIONS 

We have performed calculations for the various effects in turn using the water data given 
in Table 1. Trajectory equations were integrated numerically using a fourth order 
Runge-Kutta method with moments found from equation (36). Integrals were performed 
using Simpson's rule with 101 points. As noted previously (Barrett and Clement, 1990), in 
cases such as radiative redistribution where a lower part of the distribution evaporates, 
inaccuracies can arise at later times. It is important to note, however, that the removal of 
such inaccuracies has only a limited physical value. If the bulk of an initial distribution 
disappears either by evaporation or removal leaving only a residue from the wings of the 
distribution, the results will be sensitive to the initial specification of these wings. The 
common practice, continued here, of using lognormal distribution (equation (37)), may not 
be adequate to describe accurately the wings of physical distributions, so that excessive 
numerical accuracy in calculating their evolution is unwarranted. 
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3.1. Removal alone 

With no growth or redistribution, the solution for n is 

n (R, I) = n0 (R) e -  4o R2, (28) 

We can define a "half-life" tl;2 for removal as the time taken for the aerosol volume to 
reduce by a factor 1/2, so that 

t R3no(R)e-X°~2~'/~dR = R3no(R)dR. (29) 

For  a monodisperse aerosol t 1/2 = In 2/20 R 2 = 5780h/R 2. 
Figure 1 shows the half life vs log-normal parameter Rg for a monodisperse aerosol 

(a S = 1) and for log-normal (L,N) distributions with a S = 1.5 and 2. The lines are very close to 
being parallel, indicating that L-N distributions with finite widths act like monodisperse 
aerosols with suitably chosen monodisperse radii/~ > R~. In fact, the dashed lines are plots 
of 

5780h 
tl/2 = R~ exp [12.5 x 0.5 (In try)2] ' (30) 

which accurately represents the numerical data. The factor in the denominator of equation 
(30) is written in the form shown because, for a L-N distribution 

R " = R~' exp [m 2 x 0.5 (In a S)2 ]. (31 ) 

Thus the denominator is related to RV125---R 3"5. Although it is not unreasonable that the 
removal rate should be proportional to some higher moment of the size distribution, we 
have not been able to derive (30) analytically; nor have we tested it for size distributions 
other than L-N. 

3.2. Kelvin effect alone (Ostwald ripening) 

As noted previously (Barrett and Fissan, 1989), simulations with the Kelvin effect give 
reasonable results at short times but poor  results for longer times due to the necessity to 
determine S(t) very accurately as S--.1. However, the asymptotic theory (Lifshitz and 
Slezov, 1959, 1961) of Ostwald ripening with R ~> Rr is well known, although some 
derivations of the results are confusing. We shall follow the derivation of Dunning f1973), 

10000 [ I I - - - -  I 

1 
t 1/2 i 

(s) 

1010 J-_ . . . . . .  I I 

1 0 2-0 3-0 4-0 50 
Rg (Jam) 

Fig. l. The half-life tl/2 for gravitational fallout as a function of R~ for various ag specifying 
log-normal size distributions. The dashed lines are given by the approximate formula in the text. 
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referred to as I below, which removes some of the confusion, although it contains numerous 
typographical errors and some omissions. 

To determine the change of saturation with time, we integrate equation (21) with q =0, 
the approximation of c = c, on the RHS, and all terms on the RHS, other than rhv assumed 
to be constant: 

where 

So-S=I( (NRa( t ) -NoR3) ,  (32) 

/~= 4npe #v I L e l  - -  - -  1 - c e ( T ) + - -  . (33) 
3pve( T) # , - ( # , -  #g)c~( T) Cn 

Equation (32) is an alternative form of equation (26) without the removal term, and may 
be identified with equation (21) of I, apart from a different/( and No =0  in I. It should be 
possible to follow Dunning's derivation in I, the crucial step being the derivation of 
equation (1-40) which in our notation should read: 

- ARrt ~ 3  S~R__f (~2 + 2Rr R ) = _ ~ +  const., (34) 
2/~N R 3 (to) 

where NRa(to) gives the aerosol volume at time to in the ripening period. A factor M/d, 
which appears in equation (I-37) appears to have been omitted from the second term in 
equation (I-40) and subsequent equations. 

The factor 7~ in (34) takes the value 9/4, characteristic of the asymptotic distribution, and 
A is our constant (7) specifying/~ (0t in I). 

At long times, the solution of equation (34) reduces to the simpler expression of Wagner 
(1961): 

( AR ' t  ) 1/3 (35) 

By choosing a typical mean radius, .~, we thus obtain a timescale for Ostwald ripening 

toR "~ 7N -~ 3 /(AR~ ). (36) 

The remainder of the derivation in I proceeds unchanged with the asymptotic form of the 
size distribution being given by equation (I-61). Using the constants for water from Table 1, 
we have toR = 17.4/~ 3 (#m)s at T= 20°C and toR = 7.7/~ 3 (~m)s at T= 100°C. An asymptotic 
containment water aerosol at 100°C is hardly likely to have /~<5ttm, for which 
toR= 16 min, and more likely nearer/~= 10/~m, for which to, ~ 2 h. However the timescale 
does indicate that the Kelvin effect is clearly important for water aerosols contained for 
periods of the order of an hour or more. 

3.3. Solute effect alone 

In this case we allow no heat losses so that q = 0 and omit the Kelvin and radiative terms 
in/~ given by equation (5). The aerosol tends to an equilibrium in which salt particles with 
initial radius, Rs, have a final radius, Roo, given by 

( b ' ~  1/3 
R~ = \ ~ ]  Rs. (37) 

The final distribution is given by (equation (22)) 

No S~)I/3 R~/(bl/3 Rs)) 1 
= (2r0u2 in ag exp { _ ~ [  ln(1 _ ]2 In a s } ~ £ ,  (38) 

for an initial L-N distribution. 
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The final distribution is then also log-normal with the same value of %, but Rg replaced 
by b 1/3 Rs/(1- S~)1"3. Consequently, the moments are related by 

......... ' b \.,13 ...... ,, __ ~ I R n R~- - !  ] ~ )  s. i39) 

We can now find S~ from the mass conservation condition (32) by using equation (39) 
with n = 3: 

1 - S o = ~ {  - ( S ; -  1 + K ~ ) + [ ( 1 - S , - K ~ ) Z + 4 K ~ b ]  ~/2 }, (401 

where Ki = /~  No R 3 exp [4.5 (In %)2 ].  
We have used S, rather than So in equation (40) to represent the initial saturation before 

any water condensation takes place. Generally, following a sudden advent of water vapour 
or steam the aerosol will equilibrate in two stages (Clement, 1988), the first timescale being 
given by equation (17). During this initial rapid condensation in which/~ ~ 1/R, particles of 
radius R, grow to Ro=(R2+Rg) l/z, where R~ is a constant likely to be 1-5 pm, The 
saturation or u will now be at an approximate equilibrium. A redistribution of the water 
mass will then occur over a longer timescale to accommodate the salt content of the 
droplets. It is our purpose now to discover the properties of this redistributive process. 

If the initial saturation for the redistributive calculation is So, which we taken to be 1 for 
the calculations, the mass balance corresponding to equation (40) for the initial aerosol 
growth gives 

SI_So=KI[(R2+R2)3/2 1 1 . (41) 
... R S 

This difference corresponds to the water mass in the aerosol which will usually be much 
greater than the salt mass so that S~- 1 ,> K ~ and equation (40) can be expanded to give 

K~b bR3~ (42) 
1 - S ~  ~ s i ~ - _  1 - ~ (R  2 + R 2)312' 

where the final form follows from equation (41) with So = 1. In Figs 2(a) and (b) we show the 
variation of the mean R and standard deviation a for L-N CsOH aerosol with Rg =0,15 #m, 
ag = 1.5, with initial water coatings of 1 #m (Fig. 2a) and 5/~m (Fig. 2b). Note also that 
N =  10 ~ m -3 in Fig. 2aand  101° m -3 in Fig. 2b. In Table 2 we show the asymptotic values, 
/1~o and tr® calculated by the theory just discussed; these agree with the numerical results 
shown in Fig. 2. The redistribution takes place in very different timescales in Figs 2a and2b  
for which we can obtain estimates by putting S = S~ = const, in the growth rate equation (5) 
so that 

I~ = A ( (S~ - I )+ bR3/R3 ). (43) 

We write R=.R~o +y(t), where y is assumed small, expand equation (43) to first order in 
y and solve to obtain 

y~exp(  3A(l~-~i-S®)t ~ 
R 0o }" (44) 

Table 2. Initial and calculated parameters for the redistributions calculations with solute 
,3 

R~ N 1 -S® 1-So /~  ~, 
(/~m) (m 73) Si - 1 equation (22) equation (25) \ 1 -- S~ / (#m) (~m) 

l 1011 0.0170 4.87 x 10- 3 6.25 x 10- 3 5.76 0.94 0.40 
5 101° 0.204 5.26 x 10- s 5.25 x 10 -5 26.05 4.24 t.79 
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Fig. 2a. Mean radius R and standard deviation # as a function of time during water redistribution 
on an initial salt aerosol with R~=0.15 #m, aB= 1.5 having a water coating of R6 = 1 #m. 
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Fig. 2b. As for Fig. 2a but with Rc = 5 #m. 

An estimate for the mean relevant solute redistributive timescale is thus 

- 2  Roo 
tso~ ~ 3 A (1 -- S ~ )" (45) 

For the distributions calculated in Figs 2a and 2b, tso~=0.15 s and 820 s, respectively, 
which are comparable to the numerical results shown. 

Figure 3 shows the size distribution at various times calculated from equation (22). The 
initial distribution is the same as in Fig. 2a and is close to a fi function. The dashed line 
shows the asymptotic distribution which is a log-normal with mean [b / (1 - s~) ]  1/3 
R s --,0.864 #m and ¢rg = 1.5. Figure 4 shows the variation in the distribution of concentration 
C = vol salt/vol water for this case. Initially the distribution of C is quite broad but it rapidly 
tends to a delta function distribution n(C, ~ )  = 5 ( C -  Coo ) where the asymptotic concentra- 
tion is 

R 3 1 
Coo = (b/(1 3 3 = - -  = 0 . 0 0 5 2 6 .  ( 4 6 )  - s o o ) ) R s - R ~  5 . 7 6 3 - 1  
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Fig. 3. Size distributions, n(R, t), as functions of radius R at different times for the case shown in 
Fig. 3a. 
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Fig. 4. Distributions of salt concentration, n(C, t), where C = salt volume/total votume, at different 
times for the case shown in Fig. 3a. 

3.4. Radiative redistribution and removal 

For an aerosol which is radiating, we have to specify the total heat transfer q to or from 
the system, and previously (Barrett and Clement, 1990) and in section 2.3 we have 
considered the following cases: (i) pure radiative cooling: q given by equation (29) when the 
temperature of the system falls, and (ii) constant temperature with constant amount of 
vapour plus aerosol apart from a settling loss where u satisfies equation (32). 

In case (i) we compare results which allow for redistribution through the R d ¢ p e ~ n e e  of 
G(R) with calculations which allow for the same amount of total cooling, but have aU the 
aerosol growing with/~ proportional to l/R. 

To be explicit, the alternative forms for /~ for case (i), which may be obtained from 
equations (18) and (19), or equations (22) and (23) of Barrett and Clement (1990), are as 
follows. 

Redistribution with cooling 

(47) 
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Coolin9 alone 

where 

A RG(R) (48) 

Cn ( L e -  1)(1 - c e )  
B 1 = B 2 - 1 - (49) 

Le+(1 - c e ) C n  

Clearly, if G(R) is independent of R, the growth rates (47) and (48) are identical. 
From equation (21) of Barrett and Clement (1990) or, alternatively, equations (11), (18), 

(48) and (49), we have QR=L[1  +(1- -ce )Cn/Le]  rhv. 
Thus, in case (i) from equations (2) and (29), the fall in temperature is given by 

dT  Cn 
pcp--~- -- --(1 -- Ce)-~e Zffl v . (50) 

Now we substitute for rhv from the mass conservation equation (25) and integrate, 
ignoring the change of physical properties with t or T, to obtain 

[ fo l T-- To= --B3 NR-3( t ) -No~o+ dt 'N2R3(t  ') , (51) 

where 
4~p~ 1 - ce CnL 

B 3 - - -  (52) 
3 pgp Le 

Calculations have been performed with the growth rates (47) and (48) using the para- 
meters given in Table 1. Results at 100°C are shown in Figs 5a and 5b. The water aerosol 
grows rapidly in size so that its density initially increases before reaching a peak and then 
falling rapidly as settling begins to dominate over growth. Meanwhile the temperature falls 
at an initially increasing rate, because of the growth in droplet size, but then levels off as the 
aerosol becomes depleted. The only significant difference that redistribution appears to 
make in these calculations is that of keeping a significant width to the size distribution, as 
shown in Fig. 5a. At longer times there is slightly more airborne aerosol density with 
redistribution, probably because it keeps more aerosol with smaller radii. The results (not 
shown) at 20°C show larger differences between the cooling only and cooling plus redis- 
tribution cases. This difference arises because of the much larger negative B, which 
is proportional to Cn. A much larger fraction of the bottom end of the size distribution is 
then evaporating at 20°C and we find a slight increase in # with t and a lower airborne 
mass Pa. 

We now discuss some results for radiative redistribution and gravitational removal in 
case (ii). The growth rate is given by 

= A ( s -  1 + G(R)). (53) 

Using eqn (6) (with the approximation c = ce(T) in the denominator), together with equation 
(27) gives an expression for S(t) in terms of moments of the distribution. We choose the 
initial saturation So to have the value which gives no net condensation or evaporation, i.e. 
rhv=0. From equations (11) and (53), we find 

RG(R) 
So = 1 ~ (54) 

Radiative redistribution causes large droplets (those with G(R) > 1 - S) to grow and small 
ones to evaporate. The aerosol is then no longer in net equilibrium with the vapour and 
more vapour condenses leading to a reduction in S and an increase in total aerosol mass. 
However, gravitational settling removes some of the aerosol, reducing the total suspended 
mass. The net effect may therefore be an increase or a decrease in suspended mass initially, 
AS 23:6-6 
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Fig. 5a. Mean radius/~ and standard distribution # as functions of time for pure radiative cooling 
and redistribution at 100°C of an initial aerosol specified by R= = 3 pan, a= = 1.5, No = 108. The solid 

line is with, and the dashed line without, redistribution. 
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Fig. 5b. The suspended aerosol mass density, p=, and mixture temperature change, T-To, as 
functions of time for the case shown in Fig. 5a. 

as shown in Fig. 6. For  the case illustrated at 100°C, redistribution and condensation exceed 
removal initially and the suspended volume increases. However, as the aerosol grows the 
removal term (which, with 2(R) given by equation (4), varies as the fifth moment of the size 
distribution) increases, leading to a rapid fall in suspended volume for longer times. At 20°C 
the vapour density is much less than at the higher temperature and condensation never 
exceeds removal in the cases considered here. Also shown by the dashed line in Fig. 6 is the 
suspended volume if only removal operates and there is no radiative redistribution, It is 
clear that the radiative redistribution of vapour onto larger droplets greatly enhances 
gravitational removal of aerosol. 

3.5. Solute effect and removal 

Finally, we again consider the hygroscopic aerosols discussed in section 3.3 but now also 
include the effect of gravitational removal. The simplest cases are those where the redis- 
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tribution timescale, given approximately by equation (45), is much shorter than the 
timescale for significant fallout to occur. We can then treat the two processes separately 
using the final distribution due to hygroscopic redistribution, given by equation (38), as the 
initial distribution, No(R), in the equation for evolution by gravitational removal alone, 
equation (28). Such a case is illustrated by Fig. 7 which shows the effect of removal on a case 
previously considered in section 3.3 (Fig. 2a), At first there is very rapid condensation, 
reducing S from its initial value of 1 to close to its equilibrium value S~o given by equation 
(40) (see also Table 2). Subsequent redistribution on a timescale ~ s causes little change in 
suspended aerosol mass but leads to a much wider distribution which then falls out much 
more rapidly than the initial, almost monodisperse, distribution. The dashed lines show the 
amount of salt suspended (assuming the salt density is the same as water): after 5 h more 
than twice as much salt has fallen out than would be predicted by gravitational removal 
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Fig. 6. Aerosol volume/initial volume as a function of time for radiative redistribution and removal 
at constant temperatures (T=293  K and 373 K) for an aerosol with initial distribution: R==3 #m, 

or== 1.5, No = 101° m -3. The solid line is with, and the dashed line without, redistribution. 
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Fig. 7. Aerosol volume/initial volume as a function of time for water redistribution on a salt aerosol 
with R==0.5 #m, as= 1.5, No = 1011 m -3 and RG = 1 pm water coating. Also shown (dashed lines) 

are salt volume/initial salt volume vs time. 
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alone. For the second case considered in section 3.3, the two processes cannot be treated 
separately and a full numerical calculation is necessary. The results (not shown) display 
a similar enhancement of fallout by redistribution although the effect is not as iarge as 
in Fig. 7. 

4, CONCLUSIONS 

We have described redistributive and gravitational settling which affect a water cloud in 
a well-mixed volume or containment. In order to specify the supersaturation in the volume 
we have coupled the aerosol growth to both the vapour concentration and temperature, 
heat transfer, but no mass transfer, being allowed to the walls. Our conclusions from the 
theory and calculations performed are the following. 

(A) As was originally pointed out for the water case with Cn < 1 (Clement, 1985), the 
coupling between heat and mass transfer is essential. The neglect of heat transfer essentially 
means neglecting the dominant Le/Cn terms in equations (15) and (26). In physical terms, 
release of latent heat and consequent temperature change is the controlling factor on the 
supersaturation following condensation with redistribution in a water cloud, just as it isin 
condensation without redistribution. 

(B) An accurate form (17), has been given for the initial equilibration timescale between 
the aerosol and the surrounding vapour-gas mixture. Following this equilibration, which 
will usually occur in seconds or less, redistributive processes take place with the super- 
saturation maintained at a slowly changing quasi-equilibration value given by one of the 
equations (26) or (27} in the special cases considered. 

(C) A formal solution (equation (22)) has been given for the aerosol size distribution, 
which leads to a convenient way to calculate its moments as a function of time. Numerical 
problems in calculating trajectories can arise, particularly if much of the distribution 
evaporates or falls out. However, in this case it is likely that results will be sensitive to forms 
assumed for the wings of an initial size distribution which may be poorly determined 
physically. 

(D) Analytic timescales have been obtained for gravitational settling alone, Ostwald 
ripening from the Kelvin effect, and redistribution arising from solute in droplets. In this 
last case an initial log-normal aerosol size distribution will tend to a final equilibrium 
distribution of a similar form. The timescale can be used to see which process is likely to 
dominate in a given situation: they will often occur in sequence because, for example, the 
solute redistribution can be quite fast whereas settling and Ostwald ripening are slow. 

(E) Condensation on a hygroscopic aerosol can occur in two stages: rapid growth 
followed by solute driven redistribution. Numerical calculations performed for the redis- 
tributive phase show how the salt concentration tends to uniformity and the influence that 
this can have in enhancing gravitational fallout. 

(F) For radiative redistribution, results have been presented for the two cases of pure 
radiative cooling and cooling but the mixture maintained at a constant temperature. In the 
pure cooling case the redistributive process has only a relatively small effect on the settling 
rate, so that models which neglect the explicit radiative terms in the droplet growth rate 
would give reasonable results. In the second case, however, these models would fail as they 
would predict only a slow settling rate, whereas the results show that the airborne mass 
can be rapidly depleted by the redistribution of mass to larger droplets and their 
subsequent fallout. 

Current codes used to calculate aerosol behaviour coupled with thermal hydraulics in 
a PWR containment have several deficiencies when compared to the results obtained here, 
although they do take account of aerosol agglomeration and interactions with walls not 
considered here. For example, no codes include the advanced code ITHACA (Ketchell e t  al., 

1992) yet include the radiative term in the Mason equation for aerosol growth. The :work 
here shows that its inclusion could significantly increase gravitational settling and thus 
reduce radioactive source terms predicted for practical situations. The MAAP model jumps 
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straight to a final equilibrium radius coupled to supersaturation for a hygroscopic aerosol 
Jokiniemi, 1992) without considering whether redistributive processes could occur first. We 
hope that the present results may be used to improve the models and give some insight into 
timescales and redistributive effects in various experiments and situations which could 
occur in practice. 
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A P P E N D I X  A. T R A J E C T O R Y  S O L U T I O N S  

The aerosol equation (3) with growth and removal terms has trajectories from (no, Ro, t=0) to (n, R, t) which are 
solutions of 

dR 
/~ = - - ~  v(R, t), (A1) 

dt 

dn / Ov \ 
tA21 

Taking the partial derivative with respect to R 0 of the formal integral solution of equation (A1), we have 

y(Ro, t)= = 1 + | - - y ( R o ,  t')dt'. (A3) 
& OR' 

Differentiating (A3) with respect to t at constant Ro, and then solving the resulting differential equation gives 

y=exp[fi~R(Ro, C)dt' 1. (A4, 

Using this result, we obtain for the solution of (A2) 

t t~v 
n = n o e x p ~ - ~  dt'(~.+--(Ro, t')~dt'~ 

L Jo \ OR l J 
~Ro t 

= n o ( R o ) ( - - ' ]  e x p ' - -  I 2(R'(Ro,t'))dt']. (A5) 
\~RI ,  L Jo 
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The need to calculate t3v/8R numerically can cause problems in the numerical calculation of the trajectory using 
equation (A2). We derive an alternative equation which avoids the problem for redistribution of hygroscopic 
aerosols where the trajectory follows R~ to Ro to R: 

f-- t,t (It' 
~>R,_ aRsORo - R ° e x p | -  [ - - d t ' ] .  b47i 
c~R ~Ro ?..R R, [- Jo c~R _] 

Eliminating the exponential in (A7) using the solution (A5) with ). =0, and substituting in (A2) gives 

tA8) 
dt LR  R R 3 \R,n,(R~) R ] ] "  


