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Abstract--The transport of sodium across the cover gas space onto structures on the roof of the 
reactor vessel can pose some problems in fast reactor design. Mechanisms for this include the 
condensation of vapour onto the cool surfaces, and the deposition of sodium aerosol by 
thermophoresis, diffusiophoresis and turbulent impaction. A model of cover gas thermal hydraulics 
and aerosol dynamics is described which includes these transport mechanisms and which can help in 
the interpretation of experiments on cover gas aerosol behaviour. It is found that a single parameter, 
related to the particle nucleation rate, can characterize a series of Japanese tests conducted with 
a variable sodium pool temperature but a constant roof temperature. Furthermore, at very low pool 
temperatures it appears that particle nucleation is not possible and that the system is dominated by 
an introduced aerosol. 

N O M E N C L A T U R E  

a, b, c, d, e coefficients in growth and removal equations 
A area 
B parameter in ce 
ce equilibrium vapour mass fraction 
cv density averaged specific heat capacity 

Cns surface condensation number 
D vapour diffusion coefficient 

DSr droplet-roof view factor 
DSp droplet-pool view factor 
DSw droplet-wall view factor 

F quantity in size distribution 
g acceleration due to gravity 

hp pool-to-roof heat transfer coefficient 
hw wall-to-cavity heat transfer coefficient 

i vapour flux 
J particle removal flux 
k gas thermal conductivity 

ks Boltzmann's constant 
(k*) wavelength averaged extinction coefficient 
(k~*) wavelength averaged absorption coefficient 

K coagulation kernel 
L sodium latent heat of evaporation 
n particle size distribution 
p pressure 
q heat flux 
R aerosol radius 

Ro nucleation radius 
S peak supersaturation in boundary layer 

S. particle creation rate 
SpSt pool-roof view factor 
SwSr wall-roof view factor 

t time 
T temperature 
u e/a 
v particle removal velocity 

Vo liquid molecular volume 
V cavity volume 

V~ volume concentration of aerosol 
w d/a 
x c/a 
y b/a 
e collision efficiency 

Os particle settling flux 
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Superscripts 
g 
T 

TU 

gas viscosity 
mean free path 
albedo of cavity mixture 
exponent in size distribution 
density of cavity mixture 
sodium liquid density 
equilibrium vapour density 
Stefan-Boltzmann constant 
collision diameter 
optical thickness of cavity mixture 

surface label 
pool 
roof 
wall 

gravitational 
thermophoretic 
turbulent 

1. I N T R O D U C T I O N  

The cover gas space of a pool-type fast reactor is an inert gas blanket lying between a hot 
pool of liquid sodium coolant and a relatively cold roof structure. The geometry is 
illustrated in Fig. 1, and can be likened to that of a diffusion chamber except that the 
temperature gradients are sufficient to drive a turbulent convective flow around the cavity. 
The cover gas space is designed to allow for coolant volume changes which take place when 
the operating temperature of the reactor varies. However, due to the large temperature 
gradients present, sodium evaporates into the cavity, where it can condense to form an 
aerosol. This can have an important effect on the heat transfer across the blanket and 
therefore on the operating conditions of the reactor. Furthermore, sodium can be trans- 
ported across the cavity onto sensitive roof structures, such as penetrations which allow the 
insertion of control rods, which for reasons of safety must be kept free of solid sodium 
deposits. Vapour condensation onto a surface is driven by a temperature difference between 
the surface and vapour in the cavity, and there is also the possibility of aerosol deposition by 
various mechanisms, such as thermophoresis, diffusiophoresis and turbulent impaction. 
Theoretical modelling can be an important aid in understanding sodium transport in the 
cover gas and in optimizing a design. 

The purpose of this paper is to describe the current state of development in cover gas 
aerosol modelling, and to present calculations to interpret a series of Japanese experiments 
investigating cover gas behaviour. Emphasis is given to the process of particle nucleation, 
which controls the aerosol density and determines whether the properties of the cavity are 
strongly or weakly affected by its presence. It turns out that the nucleation rate is 
undetermined by theory at present and is best represented as a free parameter which can be 
adjusted to fit experiment. 
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Fig. I. Typical geometry of the fast reactor cover gas space, 
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2. THERMAL MODELLING 

2.1. Heat transfer 

There are two aspects to the modelling of the cover gas cavity: the analysis of heat 
transfers from the hot pool of molten sodium to the cool roof, with the possible involvement 
of walls and intervening aerosol; and the formation and removal processes which determine 
the amount of aerosol in the cavity. We shall briefly describe the thermal aspects in 
this section, including the important calculation of evaporation/condensation mass 
transfer rates at surfaces. A wider discussion of these aspects is to be found elsewhere 
(Sinai et al., 1993). 

We shall consider heat transfers into and across a simplified cylindrical cavity in the 
following to illustrate the modelling. The temperature Tb of the central well-mixed region of 
the cavity (and by assumption that of the aerosol) is determined by balancing the heat 
inputs and losses, which include radiative, convective and condensative mechanisms: 

A p ( D S p a ( T :  - -  Tb*) + hgs (~ (Tp)- ~ (Tb))) + Aw(DSwa(T~- T 4) + hw(~ (Tw)- ~(Tb))) 

=Ar(DSra(T#- Tr*)+hgd~(Tb)--~(Tr))), (1) 

where Ap, A t and Aw are the surface areas of the pool, roof and walls, respectively; DSp, DS~ 
and DSw the droplet to pool, roof and wall view factors associated with radiative heat 
transfer between surfaces according to Stefan's law. Tp, Tr and Tw are the pool, roof and 
wall absolute temperatures, a the Stefan-Boltzmann constant, hg~ and hw the pool-to-roof 
and wall-to-cavity heat transfer coefficients, and 4, describing the joint convective and 
condensative heat transfers, is given by (Clement, 1985a) 

= T - L  In(1 - ce), (2) 
Cp 

where L is the latent heat of condensation, ep the density averaged specific heat capacity of 
the cavity mixture of argon and sodium vapour, and ce is the equilibrium vapour mass 
fraction (c. = Pw/P with pv, the equilibrium vapour density and p the total density of the 
cavity mixture). The heat transfer coefficients are defined as 

hgs=h~sk(.~(TTrr)(p2Cp~l/3 / 13) 

T \ k t / J , ]  ' (4) 

where k and t/are the thermal conductivity and viscosity of the cavity mixture, g is the 
acceleration due to gravity and h~s and h~, are coefficients which for infinite surface areas are 
0.15 and 0.13, respectively (McAdams, 1954). For horizontal plates separated by a small 
distance, which usually applies in the cover gas case, the. convective heat transfer coefficient 
is arguably better described using an overall plate-to-plate correlation as given in equation 
(3), rather than separate pool-cavity and cavity-roof correlations involving (Tp-  Tb) and 
(Tb-- T,), respectively, since the boundary layer processes at each plate cannot be considered 
to be decoupled unless the separation is large. The pool-to-roof convective heat transfer for 
this situation in the absence of condensation is 

q = h'~(Tp- T~), (5) 

with h',, given by equation (3) with h~=0.075 (McAdams, 1954). We have assumed that the 
boundary layer heat transfers are characterized by equal heat transfer coefficients, so 

q = hg,(Tp- Tb)= hgs(Tb- Tr) (6) 

in the absence of an aerosol. With the assumption that (Tb -T~(Tp-T~) /2  we obtain 
a value of h~ in equation (3) equal to 0.15. The inclusion of condensative transfers then leads 
to the hs~A¢ terms in equation (1). The differences between such a treatment and one based 
on separate correlations for the pool and roof boundary layers are not expected to be great. 
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The total heat transfer to the roof is written 

qror = qr + SpSr a( Tp* -- T~ ) + DSrtr( T# - T~*) + SwSrtr( Tw 4 -  Tr*), (7) 

where qr is the convective-condensative component: 

q~=hgs(~(Tb)-~(T~)) (8) 

and SpS, and SwS~ the pool- and wall-to-roof radiative view factors. 
The radiative transfer view factors are calculated according to the optical depth ro and 

scattering albedo o~ of the cavity mixture. These parameters are determined by the aerosol 
size distribution and the size-dependent absorption and scattering efficiencies, which are 
discussed below. The pool and roof view factors with respect to each other and with the 
cavity are calculated using one-dimensional infinite plate formulae due to Williams (1983, 
1984). In this paper, view factors between the wall and either pool or roof are ignored and 
the wall-to-bulk view factor is set to be its value at infinite to, thus simplifying the necessary 
analysis and overcoming difficulties of geometry. As wall heat transfers are usually small, 
this is probably an adequate approximation. Radiative heat transfers make an important 
contribution to the total heat fluxes in the system, though for typical sodium and roof 
temperatures, convective heat transfers are larger. The condensative heat transfers usually 
make the smallest contributions. 

2.2. Mass transfer 

The rate of evaporative/condensative mass transfer at each surface is related to the 
associated convective-condensative heat transfer. This quantity has been already defined as 
qr for the roof and now we introduce analogous quantities qp and qw for the pool and walls, 
respectively. The parameter which determines the relationship is the surface condensation 
number Cn, (Clement, 1985a). The mass transfer rate at each surface is written 

q: 
i:-L(1 + Cns(T:, S:))' (9) 

where : denotes p, r or w and Cn, is a function of the surface temperature T: and the peak 
supersaturation S: in the adjacent boundary layer. This supersaturation is determined by 
the amount of aerosol in the boundary layer and ranges from unity, when copious 
quantities of aerosol are present, to a maximum S~ "x when no aerosol is present. The 
relationship between S: and aerosol properties will be discussed shortly. 

The extremes of aerosol density lead to bounds on the values of Cns. For a dense aerosol, 
S: = 1 and 

k O - c o )  
Crib(T:, S: = 1)= , (10) 

LDpc'e 

where c'e is the derivative of c~ with respect to temperature, and D is the vapour diffusion 
coefficient. All quantities are evaluated at the surface temperature T:. For no aerosol, 
S: = ST" and 

Cn~(T:, S: = 1)c'~ 
Cn~(T:, S " ~ -  (11) 

: ' - ( 1 - c ~ ) A l n ( 1 - c ~ ) / ( T b -  T:)' 

where A ln(1 - ce) = In(1 - c¢(T:))- ln(1 - c,(Tb)). This bound can be greater or smaller than 
Cn,(T:, S: = 1) depending on whether T: is greater or smaller than Tb. S~ "~ is defined by 

c~(Tu) (Tm - -  T:)-  cc(T:)(Tin - Tb) 
s ~  ax = (12) 

c~(Tm)(Tb- T:) 

with Tm given by 

\ BL ~o(TJ-co(T:) J: 

with ccocexp(-B/T) defining the parameter B. 

(13) 
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For values of S: between 1 and $7 "~, the calculation of Cns is more complicated: 

Cn,(T,, Se = 1)c~ 
) 

Cn,(Te, Se)=(I_ce(Te))In(. I ~ . ~ / ( T N _ T e )  (14) 
\ I  --O£Ce[ IN)f / 

with TN, the temperature in the boundary layer at which the supersaturation reaches its 
peak, given by 

S:c,(TN)- I ( -c,(TN)S(~ (15) 
c'¢(TN)S:-- T N- T: In 11-c , (T:)  ]" 

As S:-,S~ "~, Ts~Tm. For S: close to 1, this formalism yields an approximation used 
previously (Clement, 1985b): 

Cn,(T,, S: = 1) 
Cns(T:, S:,~ 1) = 1 + (S: - 1) 1/2 (ce c")1/2/c'~ ' (16) 

with the sign depending on that of (Tb-- Tt). Equation (14), however, is more appropriate 
and leads to the correct limit as S ~  ~. 

2.3. Aerosol couplinff to thermal modelling 

Finally, we discuss the relationship between St and aerosol properties, which provides the 
link between the thermal and aerosol aspects of the modelling problem. A simple model of 
vapour diffusion across a stagnant boundary layer in the presence of an aerosol which acts 
as a local vapour sink (by condensation onto the aerosol) yields a vapour concentration 
profile from which a maximum supersaturation can be calculated (Clement, 1987). The 
resulting relationship between S: and the aerosol properties can be written 

" 1 
S : - I  \ d x ]  c~-~:)4n~r/~ ( l -sech~) '  (17) 

where dT/dx is the temperature gradient at the surface, N is the aerosol number density in 
the boundary layer,/~ its mean radius, and 

~b = (zcN/~62) 1/2 (18) 

with 6 a length scale which can be related to S~aX: 

62 8ce(T:) ($7 "x- 1). (19) 
- ( dT~  2 

\dx]  c"(T:) 

This expression for Se incorporates the correct behaviour for the dense aerosol limit 
(N/~--,oo), and the no-aerosol limit (N/~0) .  These are, respectively, equation (17) without 
the secht~ term, and 

St=(S7 "~- 1 ) ( 1 - ~  NR62)+ 1. (20) 

The full expression, equation (17) provides an interpolation between the two. The temper- 
ature gradient at each surface is evaluated using 

( d T )  qt (21) 
dxx = k(1 + 1/Cns(T:, St))" 

It is assumed that the aerosol density is constant throughout the cavity, including the 
boundary layers, so that equation (17) provides a link between the supersaturations at each 
surface. This is not necessarily so, since aerosol may fail to penetrate close enough to 
downward facing surfaces. However, we shall ignore this possibility here. 
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The modelling of mass transfers in the cavity is treated, therefore, by assuming a peak 
supersaturation one surface, from which the condensation numbers at each surface may be 
found, and with the help of the thermal analysis, which requires the optical parameters r0 
and 09 but is only slightly affected by the condensation numbers and hence the degree of 
aerosol coupling, the mass transfer rates by evaporation and condensation may be cal- 
culated. The net evaporation rate into the cavity is given by 

Apqp Awqw Arqr 
Aid-L(Tp)(l+Cns(Tp, Sp)) + L(Tw)(l+Cns(Tw, Sw)) L(Tr)(I+CndT~,S,))' (22) 

with suitable neglect of the wall term if the wall is hotter than the bulk but not a wet surface. 
The quantity id is an effective mass flux across all surfaces facing the cavity, with total 
surface area A. This net evaporative mass input into the cavity condenses onto the aerosol 
and is then equal to the total aerosol loss rate, in a steady state. It is the source term which, 
together with models for aerosol removal, will be used in the next section to determine the 
aerosol distribution. 

3. AEROSOL ANALYSIS 

The aerosol size distribution n(R) averaged over the cavity (the number of particles in the 
size range R to R + dR per unit volume) evolves according to the following equation: 

_~+ J~(R) . ~_~([~n)_S _Kn2=O, (23) 

where Jr(R) is the removal current of radius R droplets at surface E,/~ the single droplet 
growth rate, S. the particle creation rate and Kn 2 the coagulation terms, which are written 

1 (. Kn 2 =~ JdR, dR26 [R-(R~ +R2a) '/3] K(R,, R2)n(R,)n(R2) 

- faR, K (R , ,  R) n (R , )  n (R), (24) 

with K(R~, R2) the coagulation kernel representing the rate of coalescence of droplets of 
radii R1 and R2. We shall drop Kn 2 from equation (23) but an estimate of its size and 
importance will be made later. Equation (23) describes the aerosol in the well mixed central 
region of the cavity, hence the averaging over volume. The particle creation and removal 
rates are taken to apply as fluxes at the boundary. 

3.1. Growth 

The growth rate/~ is known as a function of R and is taken to consist of a condensation 
term and a radiative redistribution term (Barrett and Clement, 1990): 

g=_a 
R +b  (25) 

where 

1VNK(Ai a Apqp+ Awq,,,-A,q,) 
a = 4~pL L(1 + Cn) J (26) 

b - Apqp + Awqw - Arqr: (27) 
4Xpe(1 + Cn) VNR 2 

with Cn given by equation (10) evaluated at Tb, and PL the density of liquid sodium. The 
first term in equation (25) describes condensation on particles in the #m region, the size 
range of most importance in the following. The parameter b and the second term in 
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equation (26) result from a possible net radiative heat loss from the aerosol. The second 
term is less important than the condensative term. Additional redistributive terms could be 
added, such as Ostwald ripening (Lifshitz and Slyozov, 1961). However, redistributive terms 
act over long timescales (Barrett et al., 1992) and since the lifetime of a sodium droplet in the 
cavity is relatively short, they have only a slight effect on the cover gas aerosol. 

In order to calculate the steady state size distribution and hence all the properties of the 
aerosol, we need to solve the first order differential equation, equation (23), setting On/Ot = O. 
This is made easier if we assume that the aerosol removal velocities ve can be expressed as 
a power series in R since we can then make analytic progress. This is particularly convenient 
since to a first approximation the removal velocities according to several mechanisms can 
be expressed as powers of R. 

3.2. Particle removal 

The removal currents can be written 

Je (R) = A< vt n, (28) 

where A< is the surface area and vt the removal velocity, at radius R, onto surface g. We 
consider gravitational settling: 

2pL9 n2 v e = ~ - q  K , (29) 

thermophoretic removal (expression applicable for R_> 1 #m and for a very high ratio of 
particle to gas thermal conductivities (Talbot et al., 1980)): 

v~ -- 1.328 __2 k VT, (30) 
R p  

and diffusiophoresis: 

(p_p,,,)+p,,,lpv , (31) 

where PL is the condensate density, ~/ the gas viscosity, 2 the gas phase mean free path 

(2=kaT/(x/rfi2~pa 2) with ac the collision diameter) p the pressure, VT the temperature 
gradient at the surface, m s the inert gas molecular mass, my the vapour molecular mass and 
pvc the equilibrium vapour pressure. Gravitational removal usually dominates for typical 
conditions: thermophoresis and diffusiophoresis make smaller contributions depending on 
the particle size. Particle removal onto downward facing surfaces, of course, does not 
contain a gravitational element. 

We also consider the mechanisms of turbulent impaction, but since no model for 
impaction from a convective flow appears to be available, we assume the deposition velocity 
is a constant, v~ v, and treat it as an input parameter. It is not likely to be an important 
removal mechanism. 

3.3. Particle creation 

The creation rate Sn is a function of size. For  later use it will be convenient to consider the 
particle creation to occur at two sizes: Ro and Rn. The first represents nucleation of new 
particles at nm sizes (by a homogeneous or heterogeneous process). The particle creation 
rate at size R n will represent an injection rate of aerosol particles by a process other than 
nucleation and Rn will be taken to be in the #m range. S~ is written 

Sn (g) = S.S~ c 6 (g - go ) + S~o ~ (g - R~). (32) 

The total nucleation plus injection rate per unit volume is then S,SoUC + S~o. 
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3.4. Size distributions 

If we write ZJ:I V=jn then from equation (23) we have, using equation (25) 

which, using equation (32) for S., gives 

n(R) = a/Ro + b exp [ (G(R) -  G (Ro))] + exp [ (G(R) -  G(R,))] (34) 

for R > R.. For  R < Rn, the injected particle radius, the second term in equation (34) does 
not appear. The exponent function G is given by 

f(a/R2+J~dR (35) 
G(R) = j\ a--T~ ~-] • 

This can be evaluated, and hence the size distribution found, if j is expressed as a series 
of powers of R. As an example, consider the case of no radiative redistribution (b = 0), 
no injected aerosol (S.o=0) and removal only by gravitational settling ( j=  Apr,~V): the 
solution is 

sNUC R 
n o  n(R) = exp [ - ~(R 4 - Ro 4)3, (36) 

a 

where 
2rrp~ ApoNR 

= (37) 
9q Aid 

In practice, ~Ro4~ 1 and so, writing --.o~N~C--'---o-, # where no is a constant, we obtain 
n(R)=noRexp(-otR4), a size distribution used previously (Clement, 1985b). 

If we write, in a general case, but still ignoring particle injection, 

j = ~ (c: R 2 - d:-  e:/R), (38) 

which includes all the R dependences described in equations (29-31), then we have 

noR 
n(R) = 1 + yR exp(vp + vr + Vw), (39) 

where y = b/a. The factors v: are given by 
~(xtR 3 -  w : g -  u:) dR 

re(R) (40) 
J 1 + y R  ' 

with xe = c:/a, wc =de/a and u:=e:/a. Where the gravitational velocity opposes the ther- 
mophoretic and diffusiophoretic velocities, the total removal velocity will be zero over 
a particular size range. This is the case for the pool and roof surfaces, where removal does 
not occur below a size Rmi. and above a size Rm,~, respectively. The opposition of the 
removal velocities is reflected in the sign convention chosen in equation (38). At vertical 
surfaces, no such considerations need be made. 

The sizes R,,i° and Rm.~ are found by solving the following equations: 

x p R 3 i n  - -  Wp R -- up = 0, (41) 

xrR3~-- wrR - u~ = 0. (42) 

We finally obtain 

vp={Fo, p(R)-Fp(Rmin)' RR>Rm'"<Rm,, (43) 
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with 

0, R > Rma x 
Vr= Fr(R)-Fr(Rmax), R <Rma,, (44) 

vw= Fw(R), (45) 

-- Xp 
Fp(R) = 7 (yR - ½ (yR) 2 + x3 (yR) 3 - In (1 + yR)) 

+ ~-~(yR- In(1 + yR)) + ~  ln(1 + yR) (46) 

and Fr(R) of the same form with Xp, Wp, Up replaced by Xr, w,, u, and similarly for Fw(R) with 
the Xp term ignored and Wp, Up replaced by Ww, Uw. In all expressions the nucleation radius 
Ro has been ignored since it is very much smaller than the size range of interest. 

The inclusion of particle injection at a radius Rn is very simple and consists of the 
multiplication of equation (39) by a factor for R greater than R,, i.e. from equation (34) we 
obtain 

noR F S.o q 
n(R) = ~ exp(vp + v, + Vw) L 1 

+ S~o vc exp(%(Rn) + vr(R'.) + vw(R.))J (47) 

for R > R.. If we again consider the simple case where gravitational settling dominates 
aerosol removal, and radiative redistribution is ignored, but include the injection of 
particles of radius R. then the size distribution is 

noRexp(--ctR4), R <Rn 

I Sno 4- -I (48) 
n(R)= noRexp(_~R4) 1 + ~ e x p ( ~ R n ) J ,  R>R."  

The size distribution provides the key to the aerosol modelling, since from it the aerosol 
density p., mean radius, etc. can be found. The optical properties of the aerosol are found 
from the following: 

(k**) 106pa d 
T o - - -  (49) 

Va PL 

(k,*) 
co = 1 - (k*---)' (50) 

where (k*) and (k*) are the wavelength averaged extinction and absorption coefficients, 
V, is the volume concentration of the aerosol and d the height of the cavity (Barrett and 
Clement, 1985). The combination (k*)/V,  in equation (49) is in units of m-l/cream -3. 
Using preliminary Mie calculations to set up a database of optical properties at various 
temperatures for a range of sizes, the optical parameters of the actual size distribution given 
by equation (47), can be calculated. 

4. THE SOLUTION ALGORITHM AND PARTICLE NUCLEATION 

The cover gas thermal hydraulic and aerosol modelling problems have now ben for- 
mulated and the links between them specified. It is most convenient to solve the combined 
problem in an iterative manner. Assuming certain values of the optical parameters To and to, 
the thermal sector of the model can be solved, giving temperatures and heat transfer rates. 
If, in addition, the supersaturation in a single boundary layer is chosen, then this determines 
the evaporation/condensative fluxes at all surfaces, and the aerosol parameter combination 
N/~. With this, and an approximate value of the second moment of the size distribution, 
NR 2, the growth parameters a and b are specified, and in the absence of particle injection, 
this determines the constant no in the size distribution. An iterative procedure is then used to 
obtain a consistent value of NR 2. If particle injection does take place, then the injection rate 
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S,o and radius Rn are also required, together with an initial estimate of no. Another 
procedure of iteration produces a consistent value of no. Once no is known, the optical 
properties of the aerosol are calculated and the whole process repeated, starting with the 
thermal-hydraulic problem. Only a few iterations are needed to produce a consistent 
solution for the whole system, and then predictions are made for the heat transfers, mass 
transfers and aerosol density and mean size. 

The one unknown parameter is the peak supersaturation in the chosen boundary layer. 
In fact, if the assumption of constant aerosol density throughout the cavity fails, then this 
quantity needs to be chosen in more than one boundary layer. For instance, the aerosol in 
the roof boundary layer may be less dense than elsewhere in the cavity, due to gravitational 
settling. However, we assume here that the density is constant throughout and so only one 
boundary layer supersaturation need be specified. 

The peak supersaturation is determined by the rate of particle nucleation in the boundary 
layer. However, this sector of the model remains undetermined. Nucleation occurs either by 
a homogeneous or heterogeneous mechanism, where the nm size condensation nuclei 
consist of clusters of vapour molecules or foreign particles, respectively. Both require 
a degree of supersaturation, which limits the formation to boundary layers, and if foreign 
nuclei are present, then heterogeneous nucleation generally occurs at lower supersatura- 
tions than the homogeneous process. 

If the formation mechanism is heterogeneous, the supersaturation at which foreign 
particles of radius Ro become condensation nuclei is 

/ 2aVo \ 
S ¢ = l n ~ ) ,  (51) 

where a is the surface tension of sodium, Vo the liquid volume per molecule and kB 
Boltzmann's constant. The critical supersaturation, for a given Ro, is lowest for the pool 
boundary layer, but since the boundary layer supersaturation behaves like c',/cc oc 1/T 2, the 
roof boundary layer has the largest supersaturation. Nucleation is therefore likely to occur 
close to the roof. If condensation nuclei are available, then the nucleation rate will depend 
on the rate of supply of foreign particles to the boundary layer, and the growth rate of the 
nuclei, which will be a function of supersaturation. The heterogeneous nucleation rate will 
be an increasing function of supersaturation, with a threshold given by equation (51), below 
which nucleation does not occur. 

Homogeneous nucleation would occur if foreign particles are systematically removed 
from the system. With every heterogeneously nucleated droplet that is removed, a foreign 
particle is lost, and so for heterogeneous nucleation to continue, a supply of foreign particles 
is needed. If the cover gas is continuously replenished, then such particles may be provided, 
but if the system is closed, and remains so for a period of time, and if no foreign particles are 
generated internally, then the supply of heterogeneous nuclei will be exhausted and 
homogeneous nucleation will take over. 

Homogeneous nucleation is not well described theoretically at present, and the most that 
can be said is that the rate increases rapidly with temperature and supersaturation. There is 
an apparent threshold supersaturation, due to the great sensitivity. In both nucleation 
processes, fluctuations in supersaturation in the boundary layers will have an important 
effect, adding to the difficulty in modelling particle formation. 

The total rate of nucleation is shown schematically in Fig. 2, as a function of supersatura- 
tion Se. In a steady state, the rate of formation is equal to the rate of droplet removal, which 
is proportional to NR 2 if dominated by gravitational settling. This quantity falls with 
supersaturation and vanishes at S~ ax. The intersection of formation rate and removal rate 
curves, sketched in Fig. 2, determines the boundary layer supersaturation which character- 
izes the model. 

Clearly, the ease with which nucleation occurs controls the state of the cover gas system. 
If heterogeneous nuclei are made available at a larger size, such that Se is reduced, or in 
greater quantities, which would enhance the heterogeneous nucleation rate, then the system 
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Fig. 2. Dependence of particle nucleation and removal rates on boundary layer supersaturation. 

is driven to low supersaturations, and a dense aerosol. If, however, heterogeneous nuclei are 
absent and the homogeneous nucleation rate low the system is driven towards the thin 
aerosol limit, with high supersaturations. It would, in principle, be possible to change the 
state of the cover gas space by altering the supply of foreign particles, possibly by careful 
design of the cover gas replenishment system. 

5. THE HIMENO-TAKAHASHI  EXPERIMENTS 

5.1. Experiments 

The preceding discussion, and development of the modelling to incorporate particle 
injection, is aimed at interpreting a series of cover gas experiments performed by Himeno 
and Takahashi (1980). A sketch of the vessel used is given in Fig. 3. The only serious 
drawback, as regards ease of analysis, in the design of the experiment is the large ratio of 
wall to pool areas. However, the walls were well insulated and so their effect on the 
temperature of the cavity mixture, and the aerosol, may have been small. Argon of greater 
than 99.99% purity was passed continuously through the vessel at a low replenishment rate 
of 2-6 1 min- t. The cover gas volume was about 100 1. Laser light scattering, calibrated 
using filters on the argon outlet pipe, was used to measure the aerosol density Pa, and the 
aerosol settling flux q~ in the centre of the cavity was determined using upward facing 
collection plates exposed in the cavity for a certain period. 

Measurements of these two quantities were made for a roof temperature of 120°C and 
pool temperatures in a range from about 280 to 530°C. The data are shown in Fig. 4 against 
pool temperature. The aerosol density ranges from about 20 g m -3 at the highest pool 
temperature down to very low values of the order of 0.1 g m-  3 at the lowest temperatures. 
Although error estimates were not provided, certain features in the data seem to emerge. 
Above about 350°C the settling rate and density rise with pool temperature; the settling rate 
with a reasonably constant slope but the aerosol density rising more steeply at first and then 
less so above about 420°C. Below 350°C the data are to an approximation independent of 
pool temperature. A partial explanation for these trends was proposed (Clement, unpub- 
lished work) involving the increasing importance of coagulation above 420°C, where the 
aerosol number density is large. The change in behaviour at 350°C, however, was not 
accounted for. 

AS 24:2-I 
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Fig. 3. Vessel used in the Himeno-Takahashi experiments. 
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Fig. 4. Dependence of aerosol density and settling rate upon sodium pool temperature in the 
Himeno-Takahashi experiments. 

5.2. Estimate of coagulation 

The model described above does not include the effects of coagulation on the size 
distribution, but an estimate can be made of its importance. The dominant coagulation 
mechanism is likely to be differential gravitational settling, for which the kernel K(R1, R2) 
in equation (24) is 

K(Rx, R2)=n(R1 + g 2 )  2 2pEg 2 2 R2), (52) 9--~ IR1-- R21~(R1, 

where e is the collision efficiency given, for example, by 

1 +p2  3 
e(R1,R2)= 1+2(1+p)3  2(1+p) '  (53) 

with p the smaller of the ratios RI/R2 and R2/R~ (Williams, 1988). 



Sodium aerosol formation and removal mechanisms 249 

Integrating equation (23) over R, the ratio of the coagulation to the removal term is 

f~ _½~dRldR2AK(R1, R2)n(R1)n(R2) 
(54) 

-~ ~ dR v,(R) n(R) 

and this can be evaluated using the calculated size distribution, assuming no coagulation. 
At 420°C, the ratio is 0.125, according to calculations to be described shortly, rising to 0.6 at 
the highest temperatures in the experimental range. These estimates of the importance of 
coagulation suggest that it does not play a major role, particularly in explaining the 
apparent change in behaviour at 420°C. Perhaps at the highest pool temperatures coagula- 
tion ought to be taken into account in the modelling, but for most of the temperature range 
its neglect is probably adequate. 

5.3. Calculations with constant S, 

Calculations have been performed for a roof temperature of 120°C and a range of pool 
temperatures. The walls were ignored, the pool emissivity was taken to be that of liquid 
sodium (Barnett et al., 1985), and the roof emissivity was 0.2. Turbulent impaction was 
ignored. 

Consider a situation where the increase in the nucleation rate with supersaturation, 
shown in Fig. 2, is rapid above a threshold at ST, SO that ST may be taken to be a good 
approximation to the supersaturation where the rates of nucleation and removal are equal, 
and hence the supersaturation which determines the rest of the model. ST is temperature 
dependent, but for a constant T,  the temperature TN in the roof boundary layer at which 
the supersaturation reaches its peak is insensitive to the cavity temperature. Thus the 
threshold temperature is reasonably independent of pool temperature, and according to the 
above assumptions, results for a range of Tp ought to be correlated using a single roof 
supersaturation. 

The curves shown in Fig. 4 support this idea since a good fit to the data is obtained using 
S~ = 65. For Tp greater than 350°C the observed behaviour of both settling rate and aerosol 
density is well described, and the "transition" temperature of 420°C naturally accounted for. 
The steep fall in Pa as the temperature decreases to 350°C is explained by the behaviour of 
S ma~, the maximum value of S ,  as a function of Tp, shown in Fig. 5. As the temperature 
difference across the roof boundary layer increases, so does the maximum available 
supersaturation. Only above about 350°C is it possible to generate a high enough super- 
saturation to exceed the threshold. In the absence of other particle formation mechanisms 
(such as particle injection) the aerosol density would therefore vanish at 350°C, and the 
steep rise immediately above this temperature, and the apparent change in behaviour at 
420°C, appear as a consequence. 

i' t / 300] 

i 
300 320 340 360 380 400 420 440 460 
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Fig. 5. Dependence of maximum roof supersaturation on pool temperature, with a threshold at 
350°C for nucleation characterized by St= 65. 
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5.4. Aerosol injection 

The residual aerosol observed below 350°C cannot therefore be formed by a nucleation 
mechanism, but more likely by the injection of particles. This possibility is supported by the 
behaviour of the settling rate, which levels off at the lowest pool temperatures. If net 
evaporation from the available surfaces were the only mass input into the cavity, then the 
settling rate, which in equilibrium is equal to the input rate, would continue to fall as the 
pool temperature is reduced. The fact that it remains approximately constant below 350°C 
suggests that there is an additional mass input to the cavity. Characterizing this input rate 
as the injection of 1.5 x 105 particles per unit volume per second, with a radius of 6.6 #m, 
and using the particle injection formalism outlined earlier, predictions of Pa and tk~ can be 
made for Tp < 350°C which account well for the data, and which are shown in Fig. 4. The 
calculations for Tp>350°C also take account of this injection rate, but the effect of this 
inclusion is small, since the nucleation rate is much larger for these conditions; and the net 
evaporative mass input dominates. 

The source for the particle injection is not perfectly clear, but there are at least two 
possibilities. Firstly, particles may be introduced along with the fresh argon which replen- 
ishes the cavity. However, it would seem unlikely such large particles could pass through the 
argon cleaning system, even at the assumed low concentration. Secondly, the particles could 
be created in the cavity by chemical reactions. Oxygen in the argon could react to form 
Na20, or hydrogen generated in the sodium pool by the reactions 

2Na + NaOH = Nai l  + N a 2 0  

2NaH = 2Na + H2 

may enter the cavity and there form Nail.  It was pointed out by Himeno and Takahashi 
(1980) that the formation of H2 by the above reactions occurred in the temperature range 
300°C < T< 380°C. If all the NaOH in the pool gives rise to Nai l  in the cover gas, then it 
can be shown that 1 ppm by weight of NaOH in the pool gives about 0.13 gm- 3 of Nai l  
aerosol, for a pool depth of 0.4 m and a cavity height of 1.4 m. This mechanism has the 
additional feature that the aerosol density and settling rate fall again below 300°C, as seen 
experimentally. 

The formation of such large particles purely from impurities in the sodium/argon system 
does seem unlikely, however, and it is worth considering other options. However, the 
options are few, assuming the data to be correct. The natural state of the system below the 
aerosol nucleation threshold is the totally decoupled state, with the vapour in the well- 
mixed region of the cavity having a density close to the mean of the equilibrium densities at 
roof and pool, with consequently a supersaturation in the bulk. The net evaporation rate id 
into the cavity tends to zero in this limit: the calculated evaporative input rate in the model, 
which assumes saturation in the bulk, is therefore an upper limit. This means that the 
calculated settling rate is also an upper limit. Considering a supersaturated cavity does not 
therefore help to explain the high values of ~bs at low temperatures, unless the collection 
plates measured not only the settling flux ~b~ but also a condensation rate. This is possible 
since the cavity is supersaturated. However, the laser measurements indicate that an aerosol 
is present and so this line of reasoning does not seem to lead to an alternative explanation of 
the data. It is possible, however, that the laser scattering method for measuring aerosol 
concentrations was in error at low densities, since it appears to have been calibrated against 

- 3  filter measurements only down to a density of about 1 gm 

5.5. Discussion 

It is challenging to offer explanations for the cavity aerosol behaviour at low pool 
temperatures, but the more important results of these calculations apply to the higher 
temperatures. Using the roof supersaturation as the single free parameter, the data over 
a range of temperatures have been well accounted for. This is possible since the roof 
temperature is a constant, and it has been assumed that the roof supersaturation is at 
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a threshold value for particle nucleation, characteristic of this temperature. For different 
roof temperatures, the threshold supersaturation would change and it remains to be seen 
whether the insights gained from this experiment can be extended to other rigs. 

It was suggested earlier that aerosol may fail to penetrate into the roof boundary layer 
due to gravitational settling, and that this boundary layer is therefore decoupled from the 
system and remains unsaturated. To illustrate this, Fig. 6 shows the size distribution 
calculated for the Himeno-Takahashi test with a pool temperature of 520°C. The maximum 
size particle which can be transported to the roof, by phoretic motion against the effect of 
gravitational settling, is about 4 #m. Assuming the roof boundary layer aerosol is limited in 
this way, the value of N/~ for the roof can be estimated to be only about 5-10% of the bulk 
value, suggesting the roof boundary is more supersaturated than might be thought, given 
a bulk value of N/~. This has been ignored here. If this were the case, then the pool 
supersaturation ought perhaps to be used as a more appropriate free parameter, and chosen 
to characterise the data instead of S,. However, as it is likely that nucleation occurs at the 
roof, and it is therefore Sr which is more closely linked to the nucleation rate, such 
a treatment would be merely empirical. 

Finally, the nature of the nucleation process can be speculated upon with the aid of Fig. 7. 
The supersaturation thresholds for heterogeneous nucleation, using equation (51) based on 
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Fig. 6. Size distribution for a pool temperature of 520°C, compared with the maximum size that can 
penetrate to the roof, Rm, ,. 
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Fig. 7. Critical supersaturation for homogeneous nucleation, according to classical theory, and 
heterogeneous nucleation, against temperature. 
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several assumed nucleus sizes Ro, and homogeneous nucleation, using the classical theory 
(Becker and D6ring, 1935), are shown against temperature. For the homogeneous process, 
a supersaturation corresponding to a nucleation rate of l06 m -3 s-1 has been used. 
Classical homogeneous nucleation theory is known to be inadequate in many situations, so 
the homogeneous nucleation threshold may be incorrect. At Sr = 65 and at a temperature of 
133°C (the value of TN for Tr = 120°C) either homogeneous nucleation is taking place, the 
classical theory overpredicting the threshold supersaturation by a factor of about 6 (which 
is possible but unlikely), or nucleation is heterogeneous, with nuclei of radius about 0.7 nm. 
Presumably, such nuclei are generated either by chemical reactions in the cavity, or are 
introduced with the argon replenishment. 

As for the transport of sodium onto the roof, a calculation for a pool temperature of 
520°C, when the aerosol density is 13.6gm -3, leads to a condensation rate of 
0 . 014mgm-2s  -1, and an aerosol mass transfer rate to the roof of 0.008 m g m - Z s  -~, 
mostly by thermophoresis. 

6. C O N C L U S I O N S  

The main conclusion of this work is that it seems to be possible to correlate the aerosol 
properties in a cover gas space using a single value of roof supersaturation for a range of 
pool temperatures. This supersaturation corresponds to the threshold for rapid nucleation, 
either homogeneous or heterogeneous using nuclei of a narrow size range. The steady 
state is maintained by a balance between the rate of nucleation and the rate of droplet 
removal. 

It remains to be seen whether the roof supersaturation of 65 for a roof temperature of 
120°C, found to be appropriate in the Himeno-Takahashi experiments, can be used in the 
analysis of other experiments. If the nucleation is heterogeneous, then the supersaturation 
threshold depends on the radius of the nuclei, and in other experiments this may change, 
depending to some extent on the argon replenishment system, or on the sodium purity. 

The Himeno-Takahashi experiments also illustrate two mechanisms of particle creation: 
nucleation for a pool temperature greater than 350°C, and particle injection below this 
temperature. Injection means the introduction into the cavity of #m size particles onto 
which sodium condensation can occur. It thus may be considered to be an extreme case of 
heterogeneous nucleation; the nuclei for this process normally being nm in size. The 
transition temperature at 350°C corresponds to the lowest pool temperature at which it is 
possible to generate a threshold supersaturation of 65 at the roof, and hence the lowest pool 
temperature at which particle nucleation is possible. 
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