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Abstraet--A statistical mechanical theory of homogeneous nucleation is developed based on 
a cluster potential energy which is independent of the position of the molecules in the cluster. The 
way in which the potential energy vanishes for clusters consisting of single monomers is shown to 
have an appreciable effect on the nucleation rate. Various possible models are obtained which have 
similarities to several other models in the literature. By equating constants in the potential with bulk 
values for the latent heat and surface tension, predictions of the model can be obtained. The theory 
predicts a temperature dependent enhancement of the nucleation rate compared to classical theory 
and shows better agreement with experimental data for some, but not all substances. 

1. I N T R O D U C T I O N  

A phase transition is driven by a reduction in the free energy of the system, but there are 
circumstances close to the equilibrium conditions where the original phase is metastable. 
A thermal fluctuation is required to nucleate the new phase since there is a free energy 
barrier between the two phases. Nucleation is important  in a variety of areas of science and 
technology. In materials science, the properties of films and castings can depend on the 
grain structure, which is determined by the nucleation mechanism. Cloud formation has 
implications in the atmosphere as well as in certain manufacturing processes. 

In our special area of interest, an understanding of aerosol nucleation is necessary for the 
analysis of nuclear reactor accidents which lead to the overheating of the reactor core. 
Volatile fission products such as caesium or iodine, or control rod materials such as 
cadmium or silver, could be released in such circumstances, and the transport  of radioactive 
substances out of the core and possibly into the environment is of great concern. Aerosol 
transport  is the most effective mechanism for wide dispersal, and the nucleation of particles 
from the vapours as they cool is an important  process. Since large temperature gradients are 
expected in an overheated core, high supersaturations are possible, and so homogeneous 
nucleation is likely to be an important  mechanism for particle formation. Heterogeneous 
nucleation, where foreign particles act as condensation nuclei, may also occur. 

The theory of liquid droplet formation from supersaturated, metastable vapours is, 
however, unable to account for the growing body of experimental measurements (Oxtoby, 
1992). Some aspects, for instance the supersaturation dependence of the rate of homogene- 
ous nucleation, can be explained successfully, but the temperature dependence of the 
predictions can be wildly inaccurate. For  this reason, together with the practical importance 
of nucleation phenomena,  much recent interest has been directed at the problem. 

The potential energy of a cluster of interacting monomers  enters into most theoretical 
treatments of the homogeneous nucleation of liquid droplets from a supersaturated vapour. 
Expressions for the potential energy should vanish for a cluster consisting of a single 
monomer.  Since in most homogeneous nucleation theories (Volmer and Weber, 1926; 
Becker and D6ring, 1935) it is the energy of the critical cluster, typically consisting of tens or 
hundreds of monomers,  which is important,  this detail is usually considered to be irrelevant. 
A recent paper (Girshick and Chiu, 1990), however, highlighted the fact that requiring the 
free energy change for monomers  to vanish in a particular way, a property referred to as 
self-consistency or just consistency, could lead to substantial changes in predictions. The 
free energy expression is related to the cluster potential energy and the purpose of this paper 
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is to demonstrate the connection and show that consistent free energies rely o~ ,.:lust.or 
potential energies which vanish for monomers.  We also aim to place the theory on a firm 
statistical mechanical basis. ' /here are uncertainties in the manner in which the po:entiat 
energy goes to zero for small clusters, however, leading to a variety of models. These differ 
substantially from the usual classical theory (Becker and D6ring, 1935) and inciude ~he 
model suggested by Girshick and Chiu (1990) and Girshick (1991), as a special ~.:a~: 

In the following section we review ttle classical theory and then present a staasticat 
mechanical model which leads to a similar form. In section 3 we investigate various possible 
choices for the cluster potential energy and illustrate the consequences of each. In section 4 
we compare the predictions of our model with experimental nucleation rate~, ,rod in 
section 5 we draw conclusions. 

2. THE C L A S S I C A L  T H E O R Y  AND A S T A T I S T I C A L  M E C H A N I C A L  
A P P R O A C H  

The classical theory treats nucleation in terms of the passage of clusters over a free energy 
barrier separating a metastable vapour  state from a stable condensed state. The rate of 
passage can be written (Becker and DOting, 1935) 

Y =( 'n , . ,  !1) 

where ni, is the thermal equilibrium population of clusters containing i* monomers,  i* being 
the critical size where the peak in free energy occurs. The parameter  C is the product of the 
collision rate of monomers  with the critical cluster and the "Zeidovich factor" which 
accounts for non-equilibrium effects (Zeldovich, 1943). 

Cluster populations in thermal equilibrium are written 

nl : rll exp(--AGi/kTh 12) 

where nl is the population of monomers,  AGi is the free energy change of cluster formation 
and k T is Boltzmann's constant multiplied by the absolute temperature. Classical theory is 
based upon the model: 

A@ =o'.41 i 2/3-ik Tln S. (3) 

where A ~ i 2/3 is the surface area of the/-cluster, 0. the bulk liquid surface tension and S the 
supersaturation, which is the ratio of actual vapour  pressure to the vapour  pressure which 
would be in equilibrium with a plane surface of condensate. 

We see immediately that AG~ is not zero, which is inconsistent with equation (2). The 
simplest means of imposing this is to write (Girshick and Chiu, 1990), 

A G i  = 0. A 1  (i 2 3 - -  1)--(i-- 1)kTln S, ~4) 

which introduces large changes in the calculated cluster populations. We shall examine the 
assumptions implicit in choosing this form later in this paper. 

A form similar to the classical result can be derived from a statistical mechanical model. 
Our  starting point is the law of mass action (Abraham, 1974) 

ni::qi(n-~ Y (5) 
\ q l / "  

where ql is the partition function for an /-cluster, 

1 ' ' - 1 0} + U,({xj}) , (6) qi = i! h 3 ~ i  dpj , dxj exp 2ram j :  

which involves the monomer  momenta  and positions pj and x~, the monomer  mass m and 
the /-cluster potential energy Ud{x~}). h is Planck's constant. Also implicit is a cluster 
definition which provides a constraint over the integration of the {xj }. We assume that U~ is 
independent of the molecular positions within the cluster. This approximation was used by 
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Abraham (1968), who used a square well interaction to evaluate Ui, and by Huang and 
Seinfeld (1992) who found Ui using the cell model of liquids. 

The importance of cluster definition in nucleation theory has been discussed recently by 
Ellerby et al. (1991). They note that, to avoid overcounting, the cluster volume should be 
defined with its centre at the centre of mass of the molecules in the cluster. Abraham (1968) 
used a cluster centred on one of the molecules of the cluster, but with this definition some 
arrangements are not counted. On the other hand, the cluster used by Huang and Seinfeld 
t1992) has boundaries fixed in space and so its centre of mass fluctuates. As noted by Reiss 
et al. (1968) these fluctuations should be compensated for by introducing a factor P[0), equal 
to the probability density that the cluster centre is at the origin. This can be estimated as 
discussed by Reiss et al. (1968): a single molecule moving at random in a sphere of volume c~ 
centred on the origin has a probability distribution for its x-displacement with mean zero 
and variance 1/5(3t!i,,"4rC) 2/3. For i molecules moving independently in the sphere, the 
x-displacement of the centre of mass is the mean of the x-displacements of the individual 
molecules and, by the central limit theorem, this has a normal distribution with mean zero 
and variance 1/(5i)(3v~/4n) 2/3 for large i. The y- and z-displacements have the same 
distributions so P(0) is given by the product of these distributions evaluated at x = v=  z = 0. 

The partition function, 2i, for a cluster of i molecules in a volume ci, with boundaries 
fixed in space, is simply 

2i= ~ . .  exp(- -  Uc/kT) ,  (71 

where 7 = ( 2 n m k T / h 2 )  3/2. The required partition function ql is related to )-i by Reiss et al. 
1968) 

. i! e x p ( -  U i / k T ) ,  (8) 

where Vo=vi / i  is the cluster volume per monomer  and 1 / is the total volume of the 
vapour-condensate  system. 

Using equations (5), (7) and (2) we now have 

' ( i "  _3 ( ~  1/2 ) 
A G i = U i - ( i - 1 ) k T l n n ~ ) ° + k T l n k i i + , / 2 5 \ l O f  , (9) 

where we have used q~=yV. 
Now we write the potential energy as the sum of surface and volume terms: 

U i = hi 2/3 .q~(i) -- ai.qv lib ( 1 O) 

which is of the usual form except for the introduction of two functions g~ and g,,, which have 
the properties: 

g~(l)=0, g,.(1)=0, (11) 
and also 

lim [i2/3qs(i)]---~i2/3, lim [ig,(i)]--*i,  (12) 

for large i, so that both U~ is zero and the large i behaviour for U~ involves just volume and 
surface terms, proportional  to i and i 2/3, respectively. We then have 

A G i = b i 2 / 3 g ~ - a i g , - ( i - l ) k T l n  ~ - + k T  In 5375 l + ~ i  

where we have used Stirling's formula: 

( ' )  i!~--(2ni)a/2ile - i  1 +12/  t14) 

to approximate  the final term in square brackets in equation (9). It should be noted that the 
last term in equation (13) does not vanish when i=  1. This is due to the approximations used 
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to derive this term tnamely, Stirling's lormula and the central limit theoremL ~-,:~ i= 
P(0)= l/vl so the factor 3/5(n/10) 1/2 in equation (9) is replaced by 1o Then AG~ does ,:anish 
for i=1,  

For nl = n~,  the monomer population in equilibrium with a plane surface of condensate 
we now impose the condition 

[dAa'J=0. lira I d-i .... 

This is equivalent to demanding that the critical cluster for saturated conditions is the bulk 
liquid with a plane surface. No nucleation is permitted in such circumstances: Inserting 
equation (131 in equation (I 51 we find 

(") kT kT - k T " "  p~ = n~,. . . . .  exp ( 16t 
l" evo 

Equation (16) has the same form as the Ctausius-Clapeyron equation, if we identify a with 
LI0 the molecular latent heat of condensation. Now AG~ becomes 

AGi = bi2;3 g~(i)-(i--1)k T In S-a(ig~(i)- i + l ) + k T ( ln 3-3~- l ). (17) 
, / 

where we have introduced the supersaturation S=n~/nle and ignored the 1/12i term in 
equation (13). We see emerging the surface term and the lnS term expected from the 
thermodynamic approach (equations (3) and (4)) together with some extra contributions. 
To obtain the correct surface energy for large clusters, we identify b in equation (17) with the 
surface energy per molecule, A la. The form of the g functions is addressed in the next 
section. 

The introduction of the equilibrium condition equation (15) is the important step which 
links the statistical mechanical approach to the more usual thermodynamic treatments, and 
as far as we are aware, has not been made before. The relationship between terms in the free 
energy and the underlying cluster model is now explicit. 

3. CLUSTER SURFACE AND V O L U M E  ENERGIES  

Example y-functions can now help in illustrating the development. We consider the 
following simple forms: 

,0,~(i)=-1---i -~, gv( i )=l - i  r. t18) 

For x>>.2/3 and y~> 1 these satisfy the conditions (11) and (12) and their use in equation (17) 
yields 

A G i = b l i 2 / 3 - i  2/3 x ) - - ( i - -  l ) kT lnS-a(1  - i  1-y)+kTln 5-~2 e . (191 

With x = 2/3 and y = 1 we obtain the following expression for the free energy change on the 
formation of the critical cluster: 

AG, .=h( i*2 /3 -1) - ( i* - l ) kTInS+kTln  ~ , ~20) 

which is the same as equation (4) (with i = i*), apart from the small additional constant term. 
However, if instead we choose larger values of x and y, so that ( i , )2/3  x and (i*) I -y  are 
negligible compared to 1, we obtain from equation (19) 

A G i . ~ b i * 2 / 3 - ( i * - l ) k T l n S - a + k T l n  ~ . t21) 

Two more possibilities exist, not considered further here, corresponding to the choices 
x=2 /3 ,  y >  1 and x>2 /3 ,  y =  i. The classical theory uses equation (3) for AG~, in equa- 
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tions (1) and (2) to obtain the nucleation rate. Using equations (20) or (21) instead therefore 
leads to an enhancement of the classical nucleation rate by a factor 53/2e/(3~)exp(b/kT)/S 
and 53/2e/(37r)exp(a/kT)/S, respectively. The former is similar to the correction factor 
suggested by Girshick and Chiu (1990). Taking b = A~ t7 and a = L1 we have b/kT ~ _ 12 and 
a/kT~-20 for n-nonane at 273 K so these enhancements are significant; furthermore, it is 
clearly necessary to decide which choices of x and y are the most reasonable. Clearly, only 
a detailed model of cluster binding could provide this: in any case, the forms in equa- 
tion (18) are not offered as unique choices: they simply contain the extremes of behaviour as 
special cases and help to classify the possibilities for AGi, listed above. Recent work by 
Dillmann and Meier (1989, 1990) involves a surface term with an assumed functional form, 
fixed by demanding the correct prediction of virial coefficients. This might be a procedure 
for establishing the 0-functions experimentally. 

We recall that additional approximations have been made in the development of 
equation (21), including use of the central limit theorem and Stirling's formula, so that 
corrections would be necessary for small i. 

The basic uncertainty in the theory, corresponding to the form of the 0-functions, lies in 
whether we expect the asymptotic form of the cluster energy to apply at the critical size, or 
only for very, large i. That is to say, whether the large i limit of Ui: 

UL=biZ/3-ai (22) 

applies close to i*, which would correspond to the capillarity approximation, or whether 
b(i z /a-  1 ) - a ( i -  l) (or some other form) is more appropriate. If we are to adhere to the 
capillarity approximation, which assumes that the critical cluster has the properties of 
a bulk liquid droplet, then we are required to choose x > 2 / 3  and y > l  in which case 
equation (22) is a good approximation to the potential energy at the critical size and 
equation (21) is the appropriate free energy expression. 

Model values of x and y could be provided by calculations of cluster energies using 
particular intermolecular forces. An analytic model, which is essentially a mean field 
approach, using a square well potential between monomers with depth e and range r/, yields 
(Abraham. 1974) 

gi= - 2  i - ~ r  o ' 

where ro=(3Vo/4rO ~/3. Equation (23) has been used previously, arbitrarily multiplied by 
( l - i - 1 )  to ensure that it vanishes at i - - l  (Abraham, 1968). In the light of our discussion, 
however, this factor is not necessary since equation (23) would not be expected to hold for 
all i down to i=  I. 

We also mention in passing that the procedure employed by Abraham (1968) to deter- 
mine the value of ro in equation (23) using second virial coefficient data is extremely 
sensitive to the small i behaviour of U~ and therefore to the forms of o~(i) and or(i) used. 

We shall concentrate in the next section on the predictions of the model when AGi. is 
given by equation (21), since an equation similar to equation(20) has previously been 
considered by Girshick and Chiu (1990). 

4. DISCUSSION 

Using a simple model of the cluster potential energy Ui, we have obtained expressions for 
the cluster formation free energy AGI which differ from the classical expression, equation (3). 
Comparing equations (21) and (3), we see that equation (21) contains a ( i -  1)kTln S term, 
rather than ikTln S, and an additional term - a  which we have provisionally identified with 

- L1, the molecular latent heat. This additional term also appears in a version of the theory 
of Reiss et al. (1968), which we refer to as RKC |I. This theory uses, 

AGi=bi2/3--(i - 1 ) k T l n S - k T l n  i 1/2 +kTlnP~*V° (241 
kT  
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with the tinal term cqual to - a - - k T  when equation(16) is used. ]'he mare dHl:eretlcc 
between equations (24) and t21) Dies in the appearance of the - l / 2 k T l n i t e r m .  

The free energy in an alternative version of the theory suggested by Reiss e~ a[. (t 968), 
which we refel to as RKCI ,  is given by 

A(~=l'ie':'-ikTlnS--kTln[(:) ''2 ] i 3/2 { ~<, 

which has no term corresponding to a, and has a different coefficient of the In i term. 
To illustrate the above discussion, we show in Fig. 1 a comparison between J,,,r,, the 

nucleation rate data for toluene (Schmitt et al., 1983) and Jth, the theoretical rates arising 
from equations (1), (2) and (21 ~. A similar comparison was made by Girshick and Chiu 
(1990), using equation !20) neglecting the small final term, and their predictions gave 
Jth/J~xp~, 10. The figure also shows the RKCI and II predictions. The enhancement over 
classical theory due to the additional term --a leads to better agreement with experiment in 
this case. However ,  for other substances, such as propanol (Strey et al., 1986), classical 
theory gives the best agreement as shown in Fig. 2. 

To obtain numerical results shown in Figs 1 and 2, we have used equation (16) to express 
a in terms of the equilibrium vapour pressure. It should be mentioned that the values of 
a obtained are somewhat less than the molecular latent heat, L~. This is because our square 
well model is too crude to give accurate quantitative predictions of the equilibrium vapour  
pressure. Usmg a = L~ in Figs 1 and 2 leads to a greater enhancement of the nucleation rate 
(and therefore worse agreement with experiment). 

Since i* increases with temperature, it is possible that the (i*) z/3-" and (i*) ~ r' terms m 
AG*, appearing in section 3 but subsequently ignored, may be more important at low 
temperatures than al higher temperatures. Certain choices of x and y could possibly 
improve agreement between theory and experiment further. However, such a development 
is beyond the simple picture that has been formulated here. 

5 C O N C L U S I O N S  

Nucleation phenomena are important m a variety of areas of science and technology, and 
yet no theory to date has been fully successful in accounting for all the experimental aspects 
of one particular example, the formation of aerosol droplets from supersaturated 
vapours. In order to make progress, we believe a proper statistical mechanical treatment of 
clusters must be developed. Technically, this avoids the problems associated in the past with 
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Fig. 1. Comparison of experimental nucleation rates for toluene (Schmin el aL, 1983) agains~ 
predictions of various models: Reiss e t  al. { 1968), Girshick and Chiu (1990), classical theory (Becker 

and D6ring, 1935) and the present model. 
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Fig. 2. Comparison of experimental nucleation rates for propanol (Strey et al., t986) against 
predictions of various models, as in Fig. 1. 

replacement terms. The need for such terms arises when a droplet free energy expression is 
used which is assumed to represent 3i degrees of freedom, based on bulk continuum ideas. 
This then leads to too many degrees of freedom when cluster translation and rotation are 
included. Replacement terms correct for this overcounting. However, evaluating the under- 
lying partition function of a cluster, as we have done, involves performing the spatial 
and momentum integrals which include all translational and rotational modes, a point 
made by Reiss et al. (1968). There is no need to add extra factors which then have to be 
corrected for. 

We have constructed a homogeneous nucleation theory based on statistical mechanics 
and a model cluster potential which correctly goes to zero for a single monomer, and which 
also has the expected surface and volume behaviour for larger cluster sizes. However, there 
exist uncertainties in the cluster potential at the critical size. In order to resolve these 
uncertainties we make an appeal to the capillarity approximation to ensure that the 
potential energy of the critical cluster is appropriate to that of a macroscopic droplet. This 
leads to a model which is similar to but does not correspond exactly to classical theory, 
which is also based on the capillarity approximation but within a continuum thermo- 
dynamics approach. The model is similar in some aspects to RKC II theory but with 
a modification to the k T  In i term in the free energy, which alters the numerical predictions. 
The model is simple, and predicts a temperature dependent enhancement of the nucleation 
rate compared with classical theory. Further developments of the model, such as relaxing 
the position independence of the cluster potential, could improve agreement with 
experiment. 
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