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Abstract

We consider chemical reactions taking place in aerosol droplets when the mean number of reactant molecules
present is less than unity. Situations of this kind are possible for ultra ne droplets in an atmosphere containing
trace amounts of gas phase reactants. We describe an analytic description of such ‘stochastic’ chemistry, and
compare the results with the predictions of traditional chemical kinetics. We establish criteria to indicate when
the traditional approach can overpredict a reaction rate considerably. We determine that it is rare for such
conditions to occur in the atmosphere.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Aerosols play a key role in the chemical evolution of their environment (Seinfeld & Pandis,
1998). For example, water droplets in the atmosphere provide tiny ‘reaction vessels’ within which
aqueous phase chemistry can take place. Similarly, solid particles provide surfaces on which
heterogeneous reactions can occur. These processes can be modelled by the usual rate equations
of chemical kinetics, and complex schemes have been developed for atmospheric processes. But
consider the following point. The number of molecules N of a trace atmospheric gas dissolved in
a droplet will depend on its partial pressure p, the size of the droplet V and the Henry’s Law
constant kH according to

N = NA103kHpV; (1)
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where NA is Avogadro’s number, p is in atm, V is in m3 and kH is in units of M atm−1. Taking
ozone as an example, present in the lower atmosphere typically at a concentration of 10 ppb (p ≈
10−8 atm), with kH = 1:1× 10−2 in the quoted units for dissolution in water, we  nd that N = 0:28
for a droplet of radius 1 �m. It would appear that any aqueous phase ozone chemistry taking place
in droplets of this size is operating in a regime where the (mean) reactant population is less than
unity. Now, the standard treatment of chemical kinetics is designed for reaction vessels containing
moles of reactants, and the reaction rate is taken to be proportional to the product of mean reactant
concentrations. But for small mean populations this assumption is surely wrong: Guctuations in
population are very strong and to calculate the reaction rate we should surely consider the mean
of the product of concentrations rather than the product of the means. Is the standard treatment of
aerosol chemistry suspect?
This is the matter we wish to address in this paper. Several papers have appeared recently

addressing the very same question in the  eld of astrochemistry (Green et al., 2001; Biham, Furman,
Pirronello, & Vidali, 2001; Stantcheva, Shematovich, & Herbst, 2002). These authors consider the
simple reaction H+H → H2, which is an important reaction in the evolution of the cosmic chemical
environment. Although the gas phase reaction is ineKcient under interstellar conditions (Gould &
Salpeter, 1963), heterogeneous reactions can occur quite eKciently on the surfaces of dust grains.
The recent studies have shown that the mean population of atomic hydrogen on each particle can
be very much less than unity, and that traditional heterogeneous chemical kinetics signi cantly over-
predicts the molecular hydrogen production rate (Green et al., 2001; Biham et al., 2001). Are any
atmospheric reactions in the same category?
We outline the stochastic chemistry approach in the next section and as an example, describe an

analytic solution. We compare the results of this analysis with the results of traditional chemical
kinetics. We provide rough criteria allowing the use of standard rate equations to describe heteroge-
neous chemistry in the atmosphere. We  nd that low mean populations of reactants are not the only
factors in determining whether a diLerent description is necessary: the relative timescale for aque-
ous phase reactions is important too. We describe numerical methods and consider various possible
applications. Finally, we summarise our conclusions.

2. The stochastic limit

The need for a stochastic approach to chemical kinetics in the presence of strong population
Guctuations has long been recognised and has been addressed in diLerent ways. Gillespie (1976,
1977) developed numerical methods for simulating the time evolution of stochastic chemical sys-
tems involving several coupled reactions. A stochastic master equation approach was applied to the
chemistry occurring in micelles by Hatlee and Kozak (1980, 1981a, b), and the presence of small
mean populations of reactants in atmospheric aerosol particles has recently been noted (Mozurkewich,
1997).
In the astrochemical literature attempts have been made (Caselli, Hasegawa, & Herbst, 1998;

Shalabiea, Caselli, & Herbst, 1998; RuNe & Herbst, 2000) to address this problem by modifying
the classical chemical rate equations in such a way as to match the results of Monte Carlo simulations
(Charnley, 1998). However these approaches are rather empirical. A more fundamental approach is
to develop the kinetics of the probability distributions for the number of adsorbed molecules on the
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particle. This is what we call the ‘stochastic chemistry’ approach. We need to determine how these
distributions, rather than the mean populations, evolve in time. The evolution of mean populations
is a characteristic of traditional chemical kinetics, which we shall term the ‘classical’ approach.
To illustrate this, consider an analytical solution to a problem in stochastic chemistry, suggested

by one of us (Lushnikov, 1999), and derived independently by Green et al. (2001). The problem is
a simple reaction involving two molecules of one type of reactant A forming a product C.

2.1. Reaction A + A → C

2.1.1. Stochastic approach
Let W (N; t) be the probability of  nding exactly N molecules of A dissolved in the droplet. We

can then write down a so-called master equation governing the time evolution of W (N; t):

dW (N; t)
dt

= jA[W (N − 1; t)−W (N; t)]

+


V
[(N + 2)(N + 1)W (N + 2; t)− N (N − 1)W (N; t)]

+ �A[(N + 1)W (N + 1; t)− NW (N; t)]: (2)

The  rst two terms in squared brackets describe changes in population due to the absorption of a
molecule from outside the droplet. The term jAW (N−1; t) represents the increase of the probability of
 nding N dissolved molecules through the attachment of molecules at a rate jA to a droplet containing
N−1 molecules, which is to be found with probability W (N−1; t). The term jAW (N; t) describes the
decrease in probability of  nding N molecules in the droplet, through a similar attachment process
to a droplet already containing N molecules.
The second group of terms corresponds to population changes due to a binary reaction taking place

with a rate constant 
. V is the volume of the droplet. The probability of  nding N +2 molecules is
W (N +2; t), and the probability of  nding N molecules increases at a collision rate 2
=V multiplied
by the number of pairs of A molecules that can be found amongst the N + 2 molecules, namely
(N + 2)(N + 1)=2. The third group describes the changes in population due to the evaporation of
a molecule from the droplet, occurring at a rate �A. Factors of N , etc., appear where necessary to
give the correct coeKcients. The initial and normalisation conditions completely de ne the solution
to Eq. (2).
This scheme replaces the much simpler equation of classical chemical kinetics:

d QN
dt

= jA − 2

V

QN 2 − �A QN; (3)

where QN is the average number of A-molecules in the droplet. The terms on the right-hand side
correspond, respectively, to deposition, reaction and evaporation. This equation can in fact be de-
rived from Eq. (2), by multiplying both sides by N , summing over N , and regarding QN as large.
The left-hand side becomes d QN=dt. The  rst term on the right-hand side of Eq. (2) leads to
jA

∑∞
N=1 NW (N − 1; t) = jA( QN + 1), and the second becomes −jA

∑∞
N=0 NW (N; t) = −jA QN . The

terms proportional to 
 yield (
=V )((N − 2)N (N − 1)−N 2(N − 1)), and the evaporation terms give
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�A((N − 1)N − N 2). Altogether, the exact equation for the evolution of the mean population is

d QN
dt

= jA − 2

V
N (N − 1)− �A QN (4)

and for large QN we can replace N (N − 1) by QN 2, thus recovering Eq. (3). The associated equation
for the change in concentration of C-molecules may be shown to be d[C]=dt = 
[A]2: the canonical
expression for  rst-order chemical kinetics (the square brackets denoting concentrations), and in eLect
a de ning equation for the reaction coeKcient 
. Clearly, the details of the population distribution,
apart from its mean, are lost by such a procedure.
In order to solve the master equation (2) let us introduce a so-called generating function

(van Kampen, 1981):

F(z) =
∞∑
N=0

zNW (N ): (5)

It can be shown that in the steady state (when dW=dt = 0), the master equation reduces to the
following ordinary diLerential equation for F(z):



V
(z + 1)

d2F
dz2

+ �A
dF
dz

− jAF = 0: (6)

This can be demonstrated by substituting expressions for F(z) and its derivatives into Eq. (6) and
expanding the summations explicitly, giving an in nite series with ascending powers of z. We focus
on some particular value of N , collect terms in zN from the series and equate them to zero, as
required by Eq. (6). This gives

0=


V
[(N + 1)NW (N + 1) + (N + 2)(N + 1)W (N + 2)]

+ �A(N + 1)W (N + 1)− jAW (N ): (7)

Performing a similar procedure for terms in zN−1 gives

0 =


V
[N (N − 1)W (N ) + (N + 1)NW (N + 1)] + �ANW (N )− jAW (N − 1) (8)

and by subtracting Eq. (8) from Eq. (7), the steady-state version of the master equation (2) is
recovered. Solving the ordinary diLerential equation (6), is equivalent to solving the original master
equation, but the problem is simpli ed considerably. This is the purpose of introducing the generating
function.
Let us now de ne two parameters X and � as

X = jA=�A (9)

and

�=
V�A



− 1: (10)

X is the ratio of the rates of molecular absorption and desorption. It is therefore related to the
gas-particle equilibrium constant, or equivalently the Henry’s Law constant kH. � is related to the
absorbed phase branching ratio: the rate of loss of A-molecules by desorption (�A) divided by
the rate of loss by reaction (
=V ). Since all the individual parameters contributing to the de nitions
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of X and � are always positive, 06X 6∞ and −16 �6∞. When the gas-phase concentration
of molecules and the particle size are both small, both X and � will lie at the lower end of the
allowed ranges. It is also useful to de ne another parameter �= 2

√
X (�+ 1)(1 + z).

The solution of Eq. (6) may now be obtained through use of the following approach (Gradshteyn
& Ryzhik, 1994; Lushnikov, 1999; Green et al., 2001). We start with a trial solution of the form:

F(z) = F0(1 + z)−�=2�(�); (11)

where F0 is a constant and � is some function of �. Inserting this expression into Eq. (6) produces
the following diLerential equation for �:

�2
d2�
d�2

+ �
d�
d�

− (�2 + �2)�= 0: (12)

The solutions to Eq. (12) are the modi ed Bessel functions I�(�) and K�(�) (Abramowitz & Stegun,
1972). The general solution may therefore be expressed as

F(z) = A(1 + z)−�=2I�(�) + B(1 + z)−�=2K�(�); (13)

where A and B are constants. However, the K� term is discarded for reasons described in the Appendix A.
The constant A can then be evaluated by noting that F(1)=

∑
W (N )=1 by normalisation of W (N ).

This implies that

A= 2�=2(I�(2
√
2X (�+ 1)))−1 (14)

which leads to the solution

F(z) =
(
1 + z
2

)−�=2 I�(2√X (�+ 1)(1 + z))

I�(2
√
2X (�+ 1))

: (15)

To recap, we have solved a diLerential equation which is equivalent to a complicated master equation
for a set of processes in population dynamics. The solution to the diLerential equation is the so-called
generating function F(z), and it takes the form of a modi ed Bessel function. This is a complicated
mathematical expression, but it can be evaluated readily enough, and we can analyse it in various
ways, to be explored in the next section. But what can it tell us about the statistical problem that
we started with?
The generating function F(z) is very useful since diLerentiating it generates moments of the

probability distribution, and hence the solution to the steady-state population dynamics. The mean
population of A-molecules in the particle is related to the derivative of F(z) at z = 1:

QN =
∞∑
N=0

NW (N ) =
dF
dz

∣∣∣∣
z=1

: (16)

We therefore write F(z) = A(1 + z)−�=2I�(�) and diLerentiate to give

dF
dz

=−A �
2
(1 + z)−�=2−1I�(�) + A(1 + z)−�=2

dI�
d�

d�
dz
: (17)
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Using standard mathematical identities involving Bessel functions (Abramowitz & Stegun, 1972)
such as

dI�(r)
dr

=
1
2
[I�−1(r) + I�+1(r)] and I�−1(r)− I�+1(r) = 2�

r
I�(r); (18)

we obtain

dF
dz

=−A �
2
(1 + z)−�=2−1I�(�) + A(1 + z)−�=2

(
I�+1(�) +

�
�
I�(�)

)
1
2
C(1 + z)−1=2

=A
C
2
(1 + z)−(�+1)=2I�+1(�); (19)

where C = 2
√
X (�+ 1). Evaluating this derivative at z = 1, and using Eq. (14) leads to the  nal

result

QN stochastic =

√
X (�+ 1)

2
I�+1(2

√
2X (�+ 1))

I�(2
√
2X (�+ 1))

: (20)

The suKx denotes that this is the solution to the stochastic kinetics problem. The mean number of
A-molecules in the droplet is therefore given by a ratio of modi ed Bessel functions. We can proceed
further. The average production rate of C-molecules is also related to moments of the probability
distribution:

jstochasticC =


V

∞∑
N=0

N (N − 1)W (N ): (21)

This is a sum of terms each of which is a product of a collision rate 2
=V and the number of pairs
available for a group of N molecules, multiplied by the probability that N molecules were actually
present in the drop. However, the right-hand side of Eq. (21) is also equal to the second derivative
of F(z) at z = 1, i.e. (
=V ) d2F=dz2|z=1, and we can evaluate this by diLerentiating Eq. (19) and
using the identities (18) again. After some straightforward algebra, we get the result

jstochasticC =
jA
2
I�+2(2

√
2X (�+ 1))

I�(2
√
2X (�+ 1))

: (22)

Expressions (20) and (22) for the mean A-population and the mean C production rate, characterise the
solution to the stochastic problem. In the next section, we compare these results with the predictions
of traditional chemical rate theory.

2.1.2. Comparison with classical approach
In order to extend our understanding of the stochastic results given in Eqs. (20) and (22), it is

useful to contrast them with the corresponding results of traditional, or classical chemical kinetics.
To obtain the classical mean population of A-molecules in a steady state, we set d QN=dt = 0 in
Eq. (3). This leaves a simple quadratic equation in QN , the appropriate solution to which is

QN classical =
−�A + (�2A + 8(
=V )jA)1=2

4
=V
(23)
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which in terms of the dimensionless X and � variables is

Nclassical =

[(
�+ 1
4

)2
+
(
X (�+ 1)

2

)]1=2
−

(
�+ 1
4

)
: (24)

Similarly, the classical expression for the C production rate is simply

jclassicalC =


V

QN 2
classical: (25)

The stochastic results should agree with classical theory in certain limits. For example, when X → ∞
for  xed � (jA becoming very large for  xed �A and 
) the mean population becomes large as a
consequence of the greater absorption rate. This is clearly a regime where the stochastic and classical
treatments should coincide. Correspondingly, Eq. (20) becomes, in this limit:

QN stochastic ≈
(
X (�+ 1)

2

)1=2
− 2�+ 1

8
+ · · · (26)

having used the standard result (Abramowitz & Stegun, 1972):

In(x) → e−x√
2�x

[
1− 4n2 − 1

8x
+ · · · higher order terms in 1

x

]
as x → ∞: (27)

Expanding Eq. (24) in 1=X gives

QN classical ≈
(
X (�+ 1)

2

)1=2
− 2�+ 2

8
+ · · · (28)

and so the leading terms in the classical and stochastic expressions for QN agree as X → ∞.
Secondly, the limit �→ ∞ at  xed X corresponds to a vanishing reaction rate 
. The C molecule

production rate should fall to zero in both treatments, and for reasons discussed at the end of Section
2.1.3, the two treatments should give the same rate as the limit is approached. We can check this
here by algebraic manipulation of the Bessel functions in the stochastic solutions. Using the result
I�(r) ∼ (2��)−1=2(r=(2�))� for large � (Abramowitz & Stegun, 1972) we can show that Nstochastic → X ,
in agreement with the classical result (24) in this limit.
A limit where correspondence between the classical and stochastic approaches is not expected

is � → −1 for  xed X . A useful comparison can be made in this limit with an approach by
Mozurkewich (1997). This arises when 
=V is very much greater than �A, corresponding to virtually
instantaneous reaction between the A-molecules. In this case Nstochastic may be rewritten using the
general series representation (Abramowitz & Stegun, 1972):

I�(r) =
( r
2

)� ∞∑
k=0

(r2=4)k

k!�(�+ k + 1)
(29)

which after some algebra leads to the result

QN stochastic =
X

1 + 2X

[
1 +

2X (1− X )
(�+ 2)

�+ O(�2)
]
: (30)

where � = � + 1. If � is very small (� → −1), the factor in squared brackets can be replaced by
unity. If we now consider large X , then QN ∼ 0:5. This is in agreement with the result obtained
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Fig. 1. Contour plot of the ratio QN classical= QN stochastic as a
function of X and �. The values quoted in white boxes
refer to the boundaries between the diLerent shaded re-
gions. The ratio is zero at �=−1 for all X since QN classical

falls to zero. The stochastic model yields similar results to
the classical rate equations in the limits X → 0, X → ∞
or �→ ∞.

Fig. 2. Contour plot of the ratio jstochasticC =jclassicalC as a func-
tion of X and �.

by Mozurkewich (1997) who considered a system where desorption processes were absent: in our
terms �A = 0 so � = −1 and X =∞. Our analysis therefore includes Mozurkevich’s problem as a
special case.
It is useful to be able to compare Eqs. (20) and (24) pictorially as well as mathematically.

Fig. 1 is a contour plot of the ratio QN classical= QN stochastic as a function of X and �. Where the ratio
is close to unity, the two approaches correspond; where this is not the case, then the stochastic
methods are necessary to get the right answers. The comparison is extended in Fig. 2 by plotting the
ratio jstochasticC =jclassicalC over a range of X and �. Fig. 3 illustrates some cuts through this plot at  xed
values of X . The diLerence between the approaches, as regards the production rate of C-molecules,
is greatest when both X and � are less than unity. This is the key conclusion to be drawn from
the present mathematical analysis. In these circumstances, the stochastic treatment gives a lower
C-production rate and a higher mean A-population than the classical treatment. The plots in Figs. 1
and 2 therefore give us a rough idea of the range of applicability of traditional, classical chemical
kinetics.

2.1.3. Applications
Figs. 1 and 2 tell us when a classical treatment of the reaction A+A → C will fail. For practical

use, however, we need to express the mathematical variables X and � in terms of experimental
parameters such as the Henry’s Law constant kH, the reaction rate 
 and the radius r of the aerosol
droplet. The X variable is the easier of the two: in the absence of reaction, X = jA=�A is just equal
to QN , and using Eq. (1) we can write X = NA103kHpV , leading to the required condition:

X = 2:5× 109kHfpTr3¡ 1; (31)
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Fig. 3. Some cuts through Fig. 2: C-molecule production rate according to the stochastic model divided by the prediction
of the classical rate equations, as a function of the parameter �. The diLerence between the two models emerges when X
and � are small.

where kH is in M atm−1, f is the gas phase volume fraction of A-molecules, pT is the total pressure
in atmospheres, and r is the droplet radius in �m. As we saw in the Section 1, this condition is
often satis ed in typical atmospheric conditions.
The condition �¡ 1 can also be recast. If we use �A=jA=X , together with jA=4�r2p=(2�mkT )1=2,

where p is the vapour pressure and m the molecular mass of species A, together with Eq. (1), then
the condition becomes

�+ 1
2

= 1017
r2


kH n1=2

(
273
T

)1=2
¡ 1; (32)

where 
 is in M−1 s−1, n is the mass of an A-molecule in proton masses, T is the temperature in
K, kH is in M atm−1 and r is in �m. This condition may be ful lled either through having a large
kH (or equivalently a small evaporation rate �A), a large reaction rate 
, or a small droplet radius r.
Now let us insert some example physical parameters. Seinfeld and Pandis (1998) provide a con-

venient compilation of aqueous phase chemical reactions, and a few can be found taking the form
A + A → C. The hydroperoxyl radical HO2 dissolves in water with a Henry’s Law constant of
kH = 2 × 103 M atm−1 at 298 K and then dissociates into H+ + O−

2 , with a dissociation constant
Ke = 3:5× 10−5 M. There are three reactions which can then take place. The  rst of these involves
the combination of two dissolved HO2 radicals to form hydrogen peroxide H2O2:

2HO2 → H2O2 + O2 Reaction 1 (33)

for which the rate constant is 
1 = 8:3× 105 M−1 s−1 (Bielski, Cabelli, & Arudi, 1985). The second
reaction involves a dissolved HO2 and a superoxide anion:

HO2 + O−
2 + H+ → H2O2 + O2 Reaction 2; (34)

where the rate constant is 
2 = 108 M−1 s−1 (Bielski et al., 1985). Finally, it is possible for two
superoxide anions to combine:

2O−
2 + 2H+ → H2O2 + O2 Reaction 3 (35)

but the reaction rate is so low (
3¡ 0:3 M−1 s−1) that we shall ignore this process here.
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It is possible to regard all three reactions (even reaction 2) as members of the class A + A → C.
How can this be justi ed? We  rst of all note that the dissolved hydroperoxyl radicals are in
equilibrium with superoxide anions: HO2 � H++O−

2 . On the microscopic scale a particular O−
2 can

capture a proton and later on lose it again as it moves through the droplet. This happens rapidly on
the timescale of encounters with another superoxide ion, since protons are much more numerous in
the droplet. We therefore regard the dissolved hydroperoxyl radical as species A, whether or not it
has lost a proton to become a superoxide ion. When this species A encounters a potential reaction
partner (O−

2 or HO2), the probability p(HO2) that it will be in its HO2 state can be computed from
the dissociation constant Ke, de ned by Ke = [O−

2 ][H
+]=[HO2], that is

p(HO2) =
[HO2]

[HO2] + [O−
2 ]

=
(
1 +

Ke
[H+]

)−1

: (36)

Similarly, we can determine the probability that the reaction partner is O−
2 or HO2. From this point

of view, reaction 1 above is of the class A + A → C with rate constant 
′1 = 
1p(HO2)p(HO2).
Similarly, reaction 2 is an A + A → C reaction with rate coeKcient given by 
′2 =
2p(HO2)p(O−

2 ),
with

p(O−
2 ) =

[O−
2 ]

[HO2] + [O−
2 ]

= 1− p(HO2): (37)

In this way, the correlations in population of the reactants HO2 and O−
2 in reaction 2 are brought

out, and the eLects on the chemical kinetics can be examined.
At pH=6, for example, [H+]=10−6 and p(HO2)=1=36. Most of the dissolved HO2 is then present

as O−
2 . The rates of the two reactions are then 
′1 = 7:8× 105 M−1 s−1 and 
′2 = 2:7× 106 M−1 s−1.

Reaction 2 dominates under these conditions, and will continue to do so for higher pH. For more
acidic conditions, on the other hand, p(O−

2 ) falls and 
′2 becomes smaller than 
′1, and for these
conditions, reaction 1 dominates.
For both reactions, we need to determine the eLective Henry’s Law constant k ′H for species A.

Since [A] = [HO2] + [O−
2 ] we deduce that

k ′H = kH
(
1 +

Ke
[H+]

)
(38)

which at pH = 6 yields k ′H = 36kH = 7:2× 104 M atm−1 at 298 K.
Focussing on conditions at pH = 6, and with the parameters k ′H and 
′2 speci ed above, together

with f = 40 ppt, pT = 1 atm, n= 33 and r = 0:1 �m, the left-hand side of Eq. (31) (corresponding
to X ) is equal to 7.2. This criterion is therefore not quite satis ed for these conditions; it would
require a reduction in particle radius to 50 nm to ful l this criterion.
More critically, putting the parameters into Eq. (32), we  nd that (� + 1)=2 is around 857, a

value far greater than unity. The second criterion for the failure of a classical treatment, Eq. (32), is
satis ed only when we reduce the droplet radius to about 3:5 nm. For such small droplets curvature
eLects are likely to appear (probably increasing the evaporation rate �A), so there is no guarantee
that the Henry’s Law constant remains the same. In any case, chemistry on such tiny droplets is
unlikely to be important in the atmosphere, and we can conclude that it is appropriate to treat these
reactions according to classical kinetics.
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A second example is the self-reaction of NO2 in water, giving nitrate and nitrite ions (Seinfeld
& Pandis, 1998). The relevant data are kH = 1:0× 10−2 M atm−1 and 
= 1:0× 108 M−1 s−1, so for
r = 0:1 �m; pT = 1 atm, n = 46 and f = 1 ppb, we have X = 2:5 × 10−5. For the second criterion,
however, we have (� + 1)=2 = 1:5 × 108. This exceeds the threshold by many orders of magnitude
and the reaction de nitely does not need a stochastic treatment. This is in spite of the fact that the
mean population of dissolved NO2 is less than unity in this example.
It is the second failure criterion (32) which is clearly harder to ful l. The crucial qualifying

conditions are a high reactant solubility (or Henry’s Law constant) and a rapid reaction rate, together
with a small droplet radius. The application of these methods to H + H → H2 on the surface of
interstellar dust particles (Green et al., 2001; Biham et al., 2001) is more relevant because atomic
hydrogen sticks strongly to the cold surface (eLectively the Henry’s Law constant is high and � is
small) while the gas phase density is tiny, so that the value of X remains very small.
Mathematical analysis can illustrate further the importance of the second criterion. For extremely

small values of 
, the population of A-molecules dissolved in a droplet is given approximately
by a Poisson distribution (this can be seen by noting that F(z) satis es dF=dz = jAF=�A in this
limit, giving the solution F(z) = exp((z − 1)jA=�A) and hence W (N ) = (N !)−1aN exp(−a) where
a = jA=�A: a Poisson distribution). Treating the reaction process as a small perturbation, we can
evaluate its rate using Eq. (21). We then  nd it to be equal to (
=V )(jA=�A)2, precisely the classical
rate in Eq. (25) with the mean population given by the classical rate Eq. (3) solved in the limit

 = 0. The correspondence is expected on the basis of the mathematical analysis given in Section
2.1.2. The additional point to be made here is that unless the Poisson distribution is disturbed
by a signi cant reaction rate (reducing the relative values of W (2), W (3), etc., compared with
W (1)) then the classical treatment is appropriate, even though the mean population could be very
small.

2.2. Reaction A + B → C

2.2.1. Stochastic and classical approaches compared
The A + A → C case is atypical of chemical reactions. We should now consider the situation

where molecules of two diLerent chemical species A and B deposit onto the droplet, and react
in solution to form the product C. Most heterogeneous atmospheric reactions are of this sort. We
need to consider the probability W (NA; NB; t) of  nding NA A-molecules and NB B-molecules in the
droplet. We shall now have two diLerent source rates, jA and jB, and evaporation rates �A and �B.
The master equation for the process can be written

dW (NA; NB; t)
dt

= jA[W (NA − 1; NB; t)−W (NA; NB; t)]

+ jB[W (NA; NB − 1; t)−W (NA; NB; t)]

+


V
[(NA + 1)(NB + 1)W (NA + 1; NB + 1; t)− NANBW (NA; NB; t)]

+ �A[(NA + 1)W (NA + 1; NB; t)− NAW (NA; NB; t)]

+ �B[(NB + 1)W (NA; NB + 1; t)− NBW (NA; NB; t)]: (39)
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This equation is constructed using the same kind of arguments as used in the derivation of Eq. (2).
In order to simplify the problem, we once again introduce a generating function

F(x; y; t) =
∞∑
NA=0
NB=0

W (NA; NB; t)xNAyNB (40)

and by similar arguments to those used in Section 2.1.1, the master Eq. (39) reduces to a second-order
time-dependent partial diLerential equation:

@F
@t

=
(
jA(x − 1) + jB(y − 1)− �A(x − 1)

@
@x

− �B(y − 1)
@
@y

− 

V
(xy − 1)

@2

@x@y

)
F: (41)

The average numbers of molecules A and B are related to derivatives of this generating function:

QNA =
∞∑
NA=0
NB=0

NAW (NA; NB; t) =
@F
@x

∣∣∣∣
x=y=1

;

QNB =
∞∑
NA=0
NB=0

NBW (NA; NB; t) =
@F
@y

∣∣∣∣
x=y=1

: (42)

This can all be contrasted with the classical rate equations for the steady-state populations of the
two species:

0 = jA − 

V

QNA QNB − �A QNA;

0 = jB − 

V

QNA QNB − �B QNB (43)

which may be shown to be consistent with Eq. (39) in the steady state and in the large population
limit (by multiplying Eq. (39) by NA or NB and summing, as before).
Unfortunately, we have not found general analytical solutions to Eq. (41). However, if we ignore

the last term in Eq. (41) (i.e. neglect the reaction rate) then the distributions of A- and B-molecules
become uncoupled, the generating function F(x; y) factors into separate x- and y-dependent parts,
and according to the analysis at the end of the last section, the solution is

F(x; y) = exp((x − 1)jA=�A) exp((y − 1)jB=�B): (44)

We shall use this generating function to provide a starting point for the computations described in
Section 2.2.3.

2.2.2. Evolution of the probability distribution
The most straightforward numerical treatment of this problem is to evolve the probabilities
W (NA; NB; t) in time according to Eq. (39) until a steady state has been reached.
This approach was employed by Green et al. (2001) and Biham et al. (2001). It is easy to implement,
but involves lengthy computations since there are so many equations involved.
We cannot evolve all the probability elements W (NA; NB; t), where 06NA6∞ and 06NB6∞.
We therefore set an upper limit on the number of A and B molecules that the droplet can possess
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at a given time, namely introduce limits Nmax
A and Nmax

B . The elements of W labelled by Nmax
A and

Nmax
B must be suKciently small to ensure the representation of the system is adequate: this restricts

the mean populations to rather low values.
We have examined the practicality of this approach. The initial condition was chosen as W (0; 0;

t=0)=1 with all other elements of W equal to zero, equivalent to the complete absence of molecules
in the droplet to start with. The converged solution for W gives us the steady-state mean populations
and the reaction rate. These calculations can be carried out. However, for conditions where the mean
populations take higher values, when jA or jB are increased for example, larger Nmax

A and Nmax
B limits

are required, and the calculations are more lengthy. For these circumstances, the following approach
is more suitable.

2.2.3. Evolution of the generating function
An entirely diLerent approach, analogous to the approach used in Section 2.1.1 to solve the

A + A → C case, is to  nd the steady-state generating function solution to Eq. (41). We work with
the function:

G(x; y; t) = ln[F(x; y; t)] (45)

which is smoother and more easy to deal with than F(x; y). Eq. (41) can be re-written as
@G
@t

= jA(x − 1) + jB(y − 1)− �A(x − 1)
@G
@x

− �B(y − 1)
@G
@y

− 

V
(xy − 1)

{
@2G
@x@y

+
(
@G
@x

)(
@G
@y

)}
: (46)

Furthermore, using the identity @ ln F=@x = (1=F)(@F=@x), and using the fact that F(1; 1; t) = 1, we
note that the mean populations may be written in terms of derivatives of G:

QNA =
@F
@x

∣∣∣∣
x=y=1

= F
@ ln F
@x

∣∣∣∣
x=y=1

=
@G
@x

∣∣∣∣
x=y=1

(47)

and similarly QNB = @G=@y|x=y=1.
In order to solve Eq. (46), jA, jB, 
, �A, �B and V are provided as input parameters and the

time-dependent problem is solved, starting from the trial solution for G given in Eq. (44), and
terminating when the solution has converged to a steady state, while maintaining the boundary
condition G(x = y = 1; t) = 0, which corresponds to the normalisation condition on W (NA; NB).
The space 06 x6 1, 06 x6 1 as well as time t are discretised and the explicit Euler method is
employed to evolve the diLerence equations for G. We found that the successful evolution of G can
be a very delicate process, particularly as the mean populations become smaller. This arises from
the insuKcient means by which the solution is fully determined by the boundary conditions. With
suKcient attention to this point, however, computations are quite rapid.

2.2.4. Results
In the light of the conclusions reached in Section 2.1.2, we need to focus our attention on species

A and B with high solubilities, trace atmospheric concentrations, and which react together rapidly in
solution. Let us consider the important aqueous phase reaction HSO−

3 + OH → SO−
3 + H2O, which

has reaction rate 
 = 4:5× 109 M−1 s−1 (Seinfeld & Pandis, 1998). The hydroxyl radical dissolves
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Fig. 4. Production rate of SO−
3 in reaction HSO−

3 +OH → SO−
3 +H2O, according to stochastic and classical approaches,

for parameters speci ed in the text, and for various droplet radii. At very small droplet sizes, the diLerence between the
stochastic and classical predictions is apparent.

from the gas phase with a Henry’s Law constant of 25 M atm−1, and a typical concentration in the
atmosphere is 0.3 ppt (Seinfeld & Pandis, 1998). The value of X for OH when pT = 1 atm and
r = 0:1 �m is therefore 1:9× 10−5, well below unity.
As for the other reactant, HSO−

3 is present in droplets through the dissolution and dissociation
of gaseous SO2. As in our discussion of HO2=O−

2 in Section 2.1.3, we regard reactant B as the
dissolved sulphur species, whether it be the hydrate SO2 · H2O, the HSO−

3 ion or even SO2−
3 .

The equilibrium between these species is well established on the timescale of encounters between
the sulphur species and the exceedingly rare OH. In fact, at pH values between 3 and 6, almost
every SO2 molecule is converted to the HSO−

3 ion under this equilibrium. As is described by
Seinfeld and Pandis (1998), the eLective Henry’s Law constant for aqueous HSO−

3 with respect to
the gas phase partial pressure of SO2 is kSO2

H K=[H
+] where kSO2

H = 1:23M atm−1 is the Henry’s law
constant for SO2 and K =1:3× 10−2 M is the dissociation constant for H2SO3 � H++HSO−

3 . This
gives an eLective Henry’s law constant for bisulphite of 1:6× 103 M atm−1 at pH=5. Assuming an
atmospheric concentration of 1 ppb SO2 these parameters yield X = 4 for HSO−

3 when pT = 1 atm
and r = 0:1 �m. Therefore, the mean populations of both reactants are small.
More critically, using the above value of 
, the parameter (�+1)=2 given by Eq. (32) is equal to

16 for r=0:1 �m using the eLective Henry’s Law constant for HSO−
3 , rising to 2000 if the constant

for OH is used. In order to detect diLerences between stochastic and classical kinetics, therefore, we
would need to consider chemistry on droplets smaller than 0:1 �m in radius.
As a more detailed study of the kinetics, Fig. 4 shows results for the production rate of SO−

3 as
a function of droplet radius r, taking all other parameters as described above. They were generated
using the numerical methods described in Sections 2.2.2 and 2.2.3. The stochastic prediction begins
to fall below the classical rate for droplets below a radius of about 10 nm, as we expected on the
basis of the above estimates of the X and � parameters. Again, chemistry taking place in these
tiny droplets is probably of no signi cance in the atmosphere, so the traditional treatment of this
particular reaction process is probably adequate. Nevertheless, a regime where it is necessary to
take a diLerent view of chemical kinetics in aerosol droplets is not so far away from the conditions
encountered in practice.
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3. Conclusions

We have investigated a stochastic model proposed independently by Lushnikov (1999) and
Green et al. (2001) to describe chemical reactions between trace atmospheric gases dissolved in
ultra ne aerosol particles. Analytic solution is possible for reactions of type A + A → C. For reac-
tions of type A+B → C analytic solution is not feasible and we have solved the model numerically.
We can conclude that diLerences in the reaction rate for A + A → C emerge when X ¡ 1 and

�¡ 1, where X and � are dimensionless combinations of the fundamental process parameters given
in Eqs. (31) and (32). This is illustrated in Fig. 3. In order for stochastic methods to be necessary,
a combination of small particle size, trace concentration of gas phase reactants in the atmosphere,
good solubility of reactants, and a rapid reaction rate are needed. The stochastic model then predicts
a larger mean absorbed population of reactant and a smaller rate of formation of product than the
classical approach. Similar features emerge for the more complex reaction of type A + B → C.
Such circumstances have been shown by Green et al. (2001) and Biham et al. (2001) to apply in

the interstellar medium. We have focussed our attention on heterogeneous reactions taking place in
atmospheric droplets. Although mean populations of molecules in aerosol droplets can be extremely
small, the rate of binary reactions seems to be well approximated by a calculation within classical
chemical kinetics, at least for the cases of atmospherically relevant heterogeneous reactions we have
studied. The main result of our study is therefore to eliminate most of the concern that there might be
in using classical kinetics. Nevertheless, our theoretical methods would allow one to study aerosol
chemistry for the unusual, but not inconceivable, conditions where the standard kinetic treatment
fails.
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Appendix A.

We explore the analytic solution for the generating function F(z) in the case of reaction A+A → C
and show why only the  rst of the two terms in Eq. (13) should be retained.
Consider the de nition of F(z) according to Eq. (5). The gradient of F(z) at z =−1 is

dF
dz

∣∣∣∣
z=−1

=
∞∑
N=0

N (−1)N−1W (N )6
∞∑
N=0

NW (N ) = QN (A.1)

and also

dF
dz

∣∣∣∣
z=−1

¿−
∞∑
N=0

NW (N ) =− QN: (A.2)

Hence the gradient is strictly  nite at z =−1. Solutions for F(z) must exhibit this feature.
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For convenience, the full solution expressed in Eq. (13) can be written as

F(z) = A(1 + z)−�=2I�(C(1 + z)1=2) + B(1 + z)−�=2K�(C(1 + z)1=2); (A.3)

where A and B are integration constants and C is a speci ed combination of the parameters V , jA
and 
.
Let us  rst examine the I� part of the solution and write

FI (z) = (1 + z)−�=2I�(C(1 + z)1=2); (A.4)

so using the identities (18) for the derivative of Bessel function, we obtain

dFI
dz

=− �
2
(1 + z)−�=2−1I�(�) + (1 + z)−�=2

(
I�+1(�) +

�
�
I�(�)

)
1
2
C(1 + z)−1=2

=
C
2
(1 + z)−(�+1)=2I�+1(�); (A.5)

where �= C(1 + z)1=2.
Consider the behaviour of this gradient when z → −1 and hence � → 0. For this we utilise a

standard expansion of Bessel functions for very small arguments. We  nd that as z → −1
dFI
dz

∼
(
C
2

)�+1 1
�(�+ 2)

(1 + z)−(�+1)=2(1 + z)(�+1)=2 (A.6)

which is  nite, irrespective of the sign of �.
Now let us examine the K� part of the solution in Eq. (A.3) and write

FK(z) = (1 + z)−�=2K�(C(1 + z)1=2): (A.7)

In order to evaluate the gradient of FK we use the standard result

dKp(r)
dr

=−Kp+1(r) + pr Kp(r) (A.8)

which leads to the relation

dFK
dz

=−C
2
(1 + z)−(�+1)=2K�+1(�): (A.9)

To see the behaviour of dFK=dz in the limit z → −1 (�→ 0) we observe that

Kp(r) ∼ �(p)2
r
2

−p
as r → 0 (A.10)

for positive p and it is also known that Kp(r)=K−p(r). Applying this to Eq. (A.9) we  nd that as
z → −1,

dFK
dz

=−
(
C
2

)−� �(�+ 1)
2

(1 + z)−(�+1)=2(1 + z)−(�+1)=2 (A.11)

which goes to in nity even if � is negative, remembering the fact that the value of � has a lower
limit of −1. Hence the K� part of the solution in Eq. (13) cannot be used.
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