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Critical cluster size and droplet nucleation rate from growth and decay
simulations of Lennard-Jones clusters
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We study a single cluster of Lennard-Jones atoms using a novel and physically transparent Monte
Carlo simulation technique. We compute the canonical ensemble averages of the grand canonical
growth and decay probabilities of the cluster, and identify the critical cluster, the size for which the
growth and decay probabilities are equal. The size and internal energy of the critical cluster, for
different values of the temperature and chemical potential, are used together with the nucleation
theorems to predict the behavior of the nucleation rate as a function of these parameters. Our results
agree with those found in the literature, and roughly correspond to the predictions of classical
theory. In contrast to most other simulation studies, we are able to concentrate on the properties of
the clusters which are most important to the process of nucleation, namely those around the critical
size. This makes our simulations computationally more efficient.26®0 American Institute of
Physics[S0021-9606800)50209-9

I. INTRODUCTION Matsumoto® They study a system consisting of molecules of

) ) nucleating vapor under a rather large supersaturation to-
A vapor can be described as a collection of free MOl-yather with carrier gas molecules in a molecular dynamics

ecules and quasibound molecular clusters which are gaining, jation. The nucleation rate is obtained directly by count-

and losing molecules at various rates. Small clusters arﬁg the number of clusters of different sizes formed in the

more likely to decay than grow, and this makes it possible tocourse of the simulation.

understand how a supersaturated vapor, one that is thermo- But most efforts have been focused on the properties of

dynamlcally m_etastgble .W'th respect to a condensed p.hasgl”ngle clusters in specified environments. The information
can be maintained in existence. The phase transformation Is

impeded since it must proceed through the formation of thesgathered is then used within a description of the dynamics of

i Cluster populations to predict the nucleation rate. In such a
relatively unstable small molecular clusters. However, thetheor the critical cluster lies at the peak of a curve of work
ratio of growth to decay probability, per unit time, increases Y, the . peai N

of formation plotted against cluster siz&. The rate of

with cluster size. Viewing the clusters as tiny versions of o . .
nucleation is related to the work of formation of a critical

continuum droplets in thermal equilibrium, the size depen-

dence of the growth and decay probabilities is easily under(_:Iuster. This is the difference between the free energy of the

stood. There is competition between the free energy cost dfiuster, and the free energy of the same set of molecules if
creating the droplet—vapor interface, and the bulk reductiofin®Y Were part of a homogeneous vapor phase. This in turn is
in free energy afforded by the phase transformation. For th&elated to the excess cluster free energy: the difference pe-
so-called critical size, the probabilities of growth and decay!Ween the free energy of the cluster, and the free energy its
are equal. Since growth and decay are stochastic, an indmolecules would contribute if they were part of a bulk con-
vidual cluster can reach the critical size through improbablélensed phask.

sequences of molecular acquisitions. The formation of criti- ~ Several techniques to study the properties of individual
cal clusters is key to the phenomenon of nucleation, wherélusters, with the aim of identifying the critical cluster size
droplets appear from a supersaturated vapor. This commond free energy, have been described in the literatsee

but inadequately understood phenomenon has been a subjécg., Refs. 5-Ji An early and influential attempt to calculate
of numerous theoretical studies, aimed at interpreting théhe work of formation of a cluster from molecular simula-
growing body of experimental data. tions was reported by Lee, Barker, and AbrataBtarting

The underlying problem in simulating the dynamics of from a high temperature quasiideal gas of molecules, for
nucleation is that the events leading to cluster growth in avhich the free energy is known, a cluster could be formed by
supersaturated vapor are very rare. It is therefore rather disequences of cooling and compression, in the process moni-
ficult to gather enough statistics by observing the spontaneering the change in free enerdy’ Using a good initial
ous creation of critical clusters in a computer simulation of aestimate of the critical size, one needs in principle to con-
sample of vapor. With computers becoming more and moraider only a few cluster sizes to identify the maximum of the
capable all the time some simulations of this type have beeoluster work of formation curve. The main drawback with
done: a recent example is the work of Yasuoka andhis procedure is that the reference ideal gas state is far re-
moved from the desired conditions.

30n leave of absence from Department of Physics, P.O. Box 9, 00014 In the recent literature free energy difference calcula-
University of Helsinki, Finland. tions have become more popular. Schemes have been devel-
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oped which, in effect, evaluate the free energy difference [
between clusters differing in size by one molectie Cal- oo
culations of this type allow a cluster to be constructed by repeitions
adding one molecule to the cluster at a time. By monitoring
the change in free energy upon each addition, a free energy (=7 =4
profile from the monomer up to the critical size can be ob-
tained. An example of this technique, working directly with
the free energies, is the Bennett methb The free energy
difference between clusters containiidg and N+1 mol- \
ecules is determined by calculating ensemble averages of an _ _ _
energy-dependent Fermi function for a system whereNall FIG. 1. Flow diagram for methods for ca]culatmg nucleation rates. Some
. . . . recent schemes follow the upper loop, while our new approach is illustrated
+1 particles are 'n.teraCt'n.g fully with each Oth?r' and for aby the lower loopM is greater tham, since in the lower loop we need to
system where the interaction of thsl{ 1)th particle is al-  study only a narrow range of sizes, whereas in the upper loop the full size
most turned off. spectrum from monomers up to critical size has to be studied. The lower

Another route to the free energy is to find the Con_Ioo.p does'not' yle!d the nucleation rate, only its temperature_ and supersatu-
. . . . . ration derivatives: a reference ralg(T,,Sy) has to be obtained by one
strained size distribution of clusters using umbrella sam<;rcyit around the upper loop, for example.

pling. Recent examples of this kind have been presented by

Kusakaet al*® and ten Woldeet al*?. Kusakaet al. work in

a grand canonical ensemble, restricting the number of mokjze The study of the whole size spectrum from monomers
ecules to a narrow interval betweblp andN,, and compar-  pwards is avoided, since we do not need the free energy of
ing the frequencies of occurrence lfmolecules in the sys-  ne critical cluster. The drawback is that we need a reference
tem. This gives the probability for aN-cluster to exist at a ate at one temperature and supersaturation to predict the
specified temperature and chemical potential, which in turj,gjyes of nucleation rates. The reference rate can be obtained
gives the cluster work of formation. with one full free energy profile study. The procedure is
ten Wolde et al* perform constant NPT simulations, jljystrated in the lower loop of the flow diagram in Fig. 1.
and bias the sampling by adding a fictitious potential, whichThe expensive part of the calculation in the lower loop in-
depends on cluster size, to the true intermolecular potentia{glyvesm repetitions, wheren is smaller thar.
This allows them to enhance significantly the formation of  we have developed a novel Monte Carlo simulation
clusters within a certain size range. The effect of the additechnique to obtain the critical cluster information. Having
tional potential is canceled when interpreting the results. Thgested the method for the case of new phase nucleation in the
simulation ylelds the size distribution of the clusters, WhICh|S|ng model of interacting Spirféywe have gone on to cal-
is again closely related to the cluster free energy as a fungulate the averaged growth and decay probabilities for clus-
tion of size. Thermodynamic integration methods are used tgers of Lennard-Jones atoms in a grand canonical ensemble.
extend the results at one vapor pressure to other pressureSio enhance statistics, we actually obtain the averages of
In all these methods the critical size is identified as thegrand canonical growth and decay probabilities within a ca-
size where the work of formation has its maximum. Thenonical scheme. The method bears some similarity to the
critical work of formation can be used to evaluate the nucleschemes that calculate free energy differences as described
ation rate. If the external parameters are changed, then @hove. We identify the critical cluster as the size for which
repeated calculation, or alternatively thermodynamicthe growth and decay probabilities are equal, and then ex-
integratiom? is necessary to obtain a new free energy pro-ploit the nucleation theorems to determine the variation in
file, a new critical size, and a critical work of formation.  nucleation rate as the conditions are changed. We take the
The approaches where the full free energy profile is obnecessary reference nucleation rates from the literature.
tained by simulations are illustrated by the upper loop of the  The free energy differences are associated with the prob-
flow diagram shown in Fig. 1. The main effort required is theabilities of gain or loss of a molecule from the cluster when
M cluster comparisons needed to establish the profile of frethe cluster population approximates to thermal equilibrium.
energy against size, wheM is of the order of the critical Our simulation method could be used to generate full free
size. energy profiles, and the other simulation methods could be
Our major aim in this article is to demonstrate how ratesused to obtain the critical size without constructing the whole
of nucleation of droplets from a supersaturated vapor can bfgee energy profile. The idea behind the approaches where
calculated more efficiently from atomistic simulations, mak-thermodynamic integration is used to obtain free energy pro-
ing use of two recently derived theoretical results known adiles in other conditions, when the profile is known in one
the nucleation theorent§!” The nucleation theorems have reference state, is very similar to the usage of nucleation
been used to extract information about critical clusters frontheorems. The computational cost of these methods also cor-
experimental dat&!’ These theorems state that if we know responds to that of the lower loop.
the size and the internal energy of the critical cluster we  The theory underlying our simulation scheme is de-
know how the nucleation rate changes with temperature anscribed in the next section, and further computational details
supersaturation. The size and energy of the critical clustesre discussed in Sec. lll. The models for the equilibrium
can be obtained by studying a narrow size region, with onlyproperties of Lennard-Jones fluid which we use when com-
m comparisons between clusters around the expected criticalring our results with those given by the classical nucle-
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ation theory are reviewed in Sec. IV, and then the nucleatiom the denominator cancels the exia,,—N integrals over
theorems are described and developed in Sec. V. The criticghe spatial coordinates of a noninteracting particle. For a
cluster information and the nucleation rates obtained by exsimulation to be realistidN,,, has to be large to make the

ploiting nucleation theorems are presented in Sec. VI. Finoninteracting particles fill the space densely.

nally, we give our conclusions in Sec. VII. The transformation from Eql) to (2) is necessary to
give two systems with different number of particles a com-

Il. THEORETICAL BACKGROUND TO THE mon measure: in Eq2) each term in the sum contains the

SIMULATION TECHNIQUE same number of integrations, and the integrands are therefore

If the Becker_[')'u'ngz rate equations for cluster popu]a_ direCtly related to the statistical Welght of the Configuration.
tion dynamics are applied to the subsaturated vapor in therlhe probability for the system to be in a state withpar-
mal equilibrium, the ratio of growth and decay probabilities, ticles having coordinategr;}, and Npa,—N noninteracting
per unit time, of a cluster o molecules can be related to Particles at arbitrary positions, can then be identified as
the differences in grand potential between clusters of sizes Nol
N+1,N, andN— 1. Thus, observing the growth and decay of PN 1) = yZ ;{— Un({ri})
clusters under a grand canonical scheme would give us in- T VNmax~ NN kT '
formation about the relative stability of clusters of different
sizes. By scaling up the cluster growth rates to represent a In the algorithm for grand canonical simulation pre-
supersaturated vapor, we obtain a set of rate equations whicented by Yaet al,?* a simulation step consists of randomly
describe nucleation, and which allow us to identify the criti- choosing to try either a creation, annihilation, or movement
cal size. of a particle, which is then accepted with the following

In the classical treatment the grand canonical partitiorprobabilities'®?! We regard the act of creation to be the
function of a system oN indistinguishable particles in a transformation of a noninteracting particle into a fully inter-
volumeV read$®? acting one. The probability that one particle is created at
positionr, is given by mifnl,C(N,{r;}®r,)], where

()

*® NN N

—_ vz —Un({ri})

E=2 ), an ex"‘{ kT |’ @) P(N+1{r}@ry)
wherer; is the position of particle and Uy({r;}) is the U
interaction energy of th&l-particle system, which depends yZV —(Unsr(ritery—uydrih)
on the configuratiodr;}. The brackets represent the sef\bf “N+1 ex KT ,
particle positions. Activity is defined &&= exd w/(kT)], T is
the temperaturek is the Boltzmann constant is the chemi- (4)

o aA3 = JhZ(27mkT) | .
::naalll pc;)éeg?gg?i/e vtgiléle?]r;r? of tEe/(saTtri?:lke 2 ﬁet:;str:re]; and the probability that a particle at positipnannihilates is

mass of the particle anklis Planck’s constant. mIin[LA(N,{ri}or;)], whereA(N.{ri}Or;) is given by

To be able to compare the probabilities of occurrence in P(N—1{r,}Er)
the ensemble of states with different numbers of particles, wa\(N,{r;}©r;)= ?"
introduceN ., @as an upper limit for the number of particles (N.iri})
in the system. Now the partition function can be written as N r{—(UN—l({fi}@fj)—UN({fi}))

= ex
:=N§m:ax ’\iLn[axdr ’)/NZN ox _UN({ri}) (2) ’)/ZV kT
= N=0 JV i=1 IVNmax*NN_I kKT ’ (5)

This form is obtained by insertindy,,,—N distinguishable  The probability that a particle at position moves to posi-
noninteracting particles into the system. The faat®dmacN  tion rj’ is mir{l,M(N,{ri},errj’)], where

UMy et D= UnTs - e
M(Ny{ri},rj—>rj')=exp{ (Undrs '] rN}k)T n({r1 I rN})). ©

In order to produce a series of configurations represen- It is worth mentioning that the approach of Rowley
tative of the grand canonical ensemble, the relative probabiliet al?®is equivalent to the one presented here: their fictitious
ties of attempted creatiom,c, and destructiongp, have to  particles correspond to olN,,,,— N creation sites. The dif-
be equal, but the relative probability of an attempted moveerence in their formulas is due to the fact that instead of our
ay can be chosen independently. The most common choictaree types of step@nove, annihilation, and creatiptheir
is to set all these probabilities eq#also ac=ap=ay grand canonical algorithm consists of two types of step: an
=1/3. attempted move, or an attempted change of type of a ran-
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domly picked patrticle. In the latter case, if a real particle isfunction employed, but their ratio is independent @f
picked annihilation is attempted, and if a fictitious particle isThis can be seen, for example, in the limit—o. In
picked creation is attempted. this limit the following inequalities always hold:

We introduce a cluster definitioiefined in detail in the  A(N,{r;}©r;)<1 and C(N,{r;}®r,)>1. If we denote the
next sectiop and study a single cluster, i.e., configurationsvolume of the part of space where creation is allowed, ac-
that violate the single cluster condition are not permitted.cording to the cluster condition, by., we getG({r;})
Thus, the actual probability for a move to be accepted is=acVc/V  for the growth rate and D({r;})
Sgumin[LM (N, {ri,rj—r{})], where §;,=1 if the cluster =apN/(yZV)exg—(Uyn-_1(ri}Or;) —Un{ri}))/(KT)] for
condition is satisfied in the new configuration, and 0 otherthe decay rate. It is clearly seen that the rati&ab D does
wise. In the same way, the creation and annihilation probnot depend orV.
abilities are subject to the cluster condition. We evaluate the ensemble averad@®s(D).,, and G

We could let the cluster evolve according to the grand=(G),, for different sizes, and identify the critical size as
canonical scheme, changing its shape and gizenber of the size for which these averages are equal. Then we obtain
component particledreely, and register the growth and de- an accurate ensemble average for the en€igy of this
cay events as a function of the cluster size to obtain theingle size.
desired growth and decay probabilities. However, in this
scheme the size of the cluster varies uncontrollably, and it ifll. COMPUTATIONAL DETAILS AND TEST
hard to gather the required statistics near the critical sizeCALCULATIONS
which by its very nature is visited infrequently.

We follow the ideas of our earlier work with the Ising
model!® and study a single cluster of a particular size,
changing its configuration according to the canonical
scheme. We evauate the canonical ensemble averages of W6, to the first minimum of the radial distribution func-

grand canonical growth and decay probabilities per I\/Iontetion of a liquid!? ¢ is the length scale of the Lennard-Jones

Carlo stefp,handlalso thle err:_semble average of tTe 'r?teracugytential. We compare our results with those of ten Wolde
energy of the cluster. In this way we get exactly the samey 512yt ynfortunately we cannot use exactly the same

information about growth and decay as we would get fromcluster definition as they do: in addition to requiring the clus-

true grand canonical simulations, but are able to study %r to be a network of neighbors, they demand that each

spe(_‘i_lzed clubstirl'saehto a de'zl':ec.i accuracy. d withi particle in the cluster should have five neighbors to be liquid-
e probability that annihilation is attempted Within & e 1 their simulation they include explicitly the vapor

Monte Carlo step isyp , and since the target particle is cho-_ molecules surrounding the cluster, and these provide the nec-
sen at _ra”.dom from_ the real p_a_rUchs available, the_ IorObab'léssary neighbors for the surface particles in the cluster. In
IFy of picking a particle at pOS|t.|omj is LN. For conﬁgura— our case there are no explicit vapor molecules around the
tlon.{ri} the dggay rgte, that is the total prloba}bmty for a cluster; thus requiring five neighbors makes the clusters ex-
particle to annihilate in a Monte Carlo step, is given by tremely compact. Trial simulations showed that this would
@ N dramatically increase the critical size.
D({r;})= N 2 SN[ LA(N,{r}O©r1))1, (7) The entire system is taken to be a sphere with rafjus
=1 which is related to volum¥ of the system appearing in Egs.
(2), (5) by V=47R%/3. Around the origin we set up a cluster
of the size studied, which satisfies the cluster definition. Due

To evaluate the growth rate we take E2). to mean that to the cluster definition, creation can be successful only at
there areN,,.,—N possible creation sites at random positionsS't€S ;’Vh'cn are W|t2|n thed d'StaE“%eigh of some e>.<|st|ng
within the system. The probability of attempted creation isP2rticle. This is used to reduce the computing time: we keep
ac=ap, and that of trying the creation at positiop is track of the particle that is furthest from the origin and try
1/(N,...—N). The total creation rate is the sum of the prob_creauon only in the origin-centered sphere with radRls

abilities to create a particle at any of thg,,,—N positions. = T'turthestt Ineigh- Outside this sphere creation can never be
Thus, the creation rate for a configuratigm} reads successful. In Eq(8) the N,,.«— N attempted creation sites
cover the whole volumé&/ with a fixed density, but N;ax
C

o Nmax—N —N)[1-(R'/R)®] terms of the sum are automatically zero.
CUrb=N_—-N > Saumin[LC(N{ri}ery], The radiusR can be taken as very large to avoid the cluster
max K=t g ever being close to the boundaries of the system: the actual
volume of the system enters the simulation only through Egs.
whered, is zero if the particle created would not be part of (4) and(5), and the calculation di ., for Eg. (8) from the
the cluster according to the cluster definition. fixed densityN,,.,/V. When changing the configuration, we
The growth rate is essentially the average of growthattempt, on average, one canonical move for every particle.
probabilities overN,,—N sites, and it is independent Every tenth configuration, the origin is moved to the new
of N if Npay iS large enough to provide sufficient sam- center-of-mass.
pling. Both growth and decay rate depend on the volume We study a sufficient number of configurations to obtain
of the systemV in a complex way due to the minimum accurate ensemble averages. The accuracy is monitored by

We define a cluster as a connected network of neighbors,
and two particles are considered neighbors if they are less
than r.egn apart. This definition has been introduced by

tillinger> The valuer qq=1.50 was chosen as it corre-

where &, sets the probability to zero if the annihilation
would result in splitting the cluster.
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TABLE I. Test calculations foN=1 andN=2 clusters with different densities of creation sitég,,/V (for
N=1) and number of sample configuratioNg,,s, (for N=2). Calculations are performed with the truncated
and shifted Lennard-Jones potential wkflV e=0.741,Z' =0.02, andR=50. p, is the molecular density of the
liquid phase. The digits after the sign denote the statistical error in the two last digits of the result, e.g.
0.020 16-01 means 0.020 1©0.000 01.

N NmaX/V Nconfig <G>Sim <G>exacl <D>sim <D>exam <E>sim/€ <E>exacl/€
1 100p, 1 0.02016-01 0.02011

1 1000p, 1 0.02012-01 0.02011 e

2 100p, 1000 0.0301%16 0.03166 0.079t52 0.0823 —0.70=03 —0.68
2 100p, 10000 0.0302206 0.03166 0.080517 0.0823 —0.69+02 —0.68

comparing the averages over equal subblocks of the chain of 1 (Tneigh 2
configurations. We can study widely separated sizes with <D>N:2:6fo min Lm
modest accuracy to locate the interesting size region, and
perform more accurate simulations around the expected criti- —U(r) —U(r)
cal size. xexp — 7 T 4mridr, (12
The particles forming the cluster are simple Lennard- _ _
Jones atoms interacting through the potential and the average energy for the dimer is
a\? [o)\® 1frneigh F(—U(I’))
)= Bl I Elneo=— U(r)ex 4rr2dr, 13
U(ry) 4e(r” ri,-) , ©  Enomg) Umed g4 13

wheree and o are the well depth and the length scale of thewhereU(r) is the interaction energy of two atoms which are

potential, respectively, and wherg; is the separation be- separated by distance; the normalization factor isQ

tween atoms labeledand]. = [eoexy —U(r)/(kD)J4mr?dr, and exp—U(r)/(kT)] is the
We performed two sets of simulations: one to get thegoltzmann factor associated with a dimer configuration char-

critical size as a function of chemical potential differenceacterized by an atomic separation

between vapor and liquidy u/(kT) (defined in detail in the Finally, the average growth rate for the dimer is

beginning of Sec. Iy, at a constant temperature, and the

other to get the critical size as a function of temperature with (G) :ifrneighjrlz \/rﬁeigh—xz Amr2dr

constantA u/(kT). The first set was performed with the fol- N=2"0QV /20 Jx=_15 y=0

lowing truncated and shifted potentiald’(r;;)=U(rj;)

—U (T cuo) Whenr <r gy and U’ (ri;) =0 whenr > g « 4y dxdymin 1ﬂexp( —U(r)”

The cutoff radius was .= 2.50, and no long-range cor- "3 kT

rections were used. The second set of simulations was per- —UL(rxy)

formed with the full potential9). The reason for using two % %3—3/ ] (14)
versions of the potential is that we wanted to compare our kT

12 . .
results to those of ten Woldet al,™ which are obtained at \ypere the integration limits fax andy arise from the nature

kT/e=0.741 with the truncated and shifted potential, while 5¢ the creation volumé/c which consists of two partially
the literature studies used for comparison at other temper%-ve”appmg spheres, and depend on the separation of the two

tures refer to the full potential. _ atoms in the dimer denoted bbyU(r,x,y) is the interaction
The parameters entering the simulation are the tempergsnergy of three atoms, the first one of which is situated in the

ture T, and reduced activity" defined as origin, the second one at Cartesian coordinate8,0) and
Z'=Zx(colA)3=exd u/(KT) =3 In(Alo)]. (10  the third one atX,y,0).

_ _ o Table | shows the examples of these test calculations
First we studied clusters consisting of one or two atomsyjith kT/e=0.741,Z' =0.02, andR=50¢, for the truncated
only. For these sizes the growth and decay probabilities  anq shifted potential. The simulation results agree well with

latter makes sense for the two-cluster only, and even then th@ie ones obtained by evaluation of the integrals in Ei)
cluster requirement of one neighbor has to be relagad be {5 (14) using MATHEMATICA .2 Moreover, in doing this we
evaluated exactly. The ensemble average of the growth ralgave gained information about how many configurations

for a “cluster” consisting of a single atom is given by have to be studied and what the valueNyf,, should be to
1 [ Tneigh ZyW —U(r) get enough statistics. We found that the density of the at-
(G)Nzlzvf min[l,Tex;{ T) 47rr2dr, tempted creation sited\(,,,/V) has to be of the order of 100
0

times the density of the liquid at the prevailing temperature.
1D The number of configurations needed for accurate results

where U(r) is the interaction energy between the existingnaturally increases with the size of the cluster.

atom at the origin and the created atom at distanitem it. Our simulations were performed on a Compaq Alpha

From Eq.(7), the average decay rate for a dimer is Server GS140 with a 525 MHz processh,,,/V=100 was
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TABLE Il. Average CPU time elapsed in secondsin obtaining the aver- P=kTon(1+B 16

age growth and decay probabilities in example simulations with different p( P). (16
densities of potential creation sitékn../V and number of sample configu- The chemical potential for a system described by this equa-
rationsNc, g for different size interval§N; ,N¢]. p; is the molecular den- tion is given by

sity of the liquid phasekT/e=0.741,Z'=0.02.

Npax/V'  Neoig  t[1,2]  t[10,11]  t[25,26 t[69, 70 ki_r=|n(pA3)+ZBp. (17

100 p, 1000 16 185 478 2448 S )

100 p, 100 1.7 17 50 318 A more accurate description is given by the following Haar—

50 py 100 0.9 7.4 27 142 Shenker—KohlefHSK) model?®

2(10- 12+ 47?
p=kTp| 1+Bp+ IO 24T ) (18
. . . , . (1-7)

used in all simulations, and the number of configurations per
size was generally 10 OOQ, although_ larger values of up to B 5 7°(15—219+8%%)
100 000 were used occasionally for improved accuracy. To k_-r—ln(PA )+2Bp+ (1- 1) ' (19

give a picture of the time required for the simulations, Table
Il shows times required for example simulations. It is seerwhere »=mpd3/6 and the hard sphere diameteis

that while the time required increases fairly linearly with L6

Nmax/V and number of configurations, it grows nonlinearly d:f [1—exp{—(U(r)+e)/(kT)}]dr. (20)
when the size of the cluster increases. The times do not 0

change significantly if we use the full potential instead of the  The chemical potential difference is related to the vapor
truncated one. The radius of the bdR)(does not affect the pressureP by the following equation:

times either. The simulations for the largest size we studiecﬁ

N=75, took about 10 h CPU time with 10000 configura- P ,
tion Auw(P)=| |————|dP’, (21)
ons. P p(P") P
where the liquid is assumed incompressible.
IV. PHYSICO-CHEMICAL DATA AND COMPARISON ten Wolde kindly provided us with data for vapor den-
MATERIAL sity p as a function of pressui, obtained from their simu-

. lations with the truncated and shifted potential for pressures
ten Woldeet al}? use umbrella sampling to compute the .
pang P n the range 0.00Z2Po>/e<0.017 at temperatur&T/e

free energy of a cluster as a function of its size, and identif))

the critical size as the size where the work of formation has . 0.741. We found that the Lennard-Jones fluid, under their

its maximum. They report the critical sizes at constant tem_simulation conditions, can be described by the virial equation

peraturekT/e=0.741 as a function of chemical potential dif- of state(16), and the second virial coefficient was found to
ference A u(P) = u(P)— (P, where u; and u are the beB/o3=—7.506. The behavior of the vapor clearly differs

chemical potentials of the liquid and vapor, respectively, anJrom :hat chi adn tldeatljtgz_:ls. The hégptert'—ort?]er (tjertm '? Ekei/ Id

P is the pressure. They use the truncated and shiftelf n°12 needed fo obain a good 1it to the cata. ten wolde

Lennard-Jones potential with = 2.50- and no long-range et al“ also present the value for the saturation vapor pres-
utoff — &+ 3/ . —

corrections. The smallest critical size they studied is around urePo~/ Gd_ ?002 83’ an_sl the ngcgssar)/Evaéu.e?forZs/urface

66 and the largest 350. The critical sizes obtained from theifension and liquid density needed in 49: I'oe

. . ; . : =0.494 andp,c3=0.766.
simulations are in good agreement with classical théory, ' B .
which predicts the critical sizbl* to be given by For temperatures other th&T/e=0.741 we found nei-

ther critical size data nor nucleation rates for comparison.
32413 Comparisons at other temperatures are thus made with clas-
m, (15 sical theory only. But the required physico—chemical data
Pras found in the literature refer to the full potential, and for this
wherel’., is the surface tension of a flat liquid/vapor inter- reason the full potential is used in our simulations for tem-
face andp, is the number density of the liquid at coexistence.peraturesk T/e=0.70, kT/e=0.75, andkT/e=0.80. Lotfi

We want to compare the critical sizes given by ouret al?® report that the HSK equatior@8), (19) can be ap-
method with classical theory, and with the results of tenplied to the Lennard-Jones systems at these temperatures.
Wolde et al. at the smallest sizes they studied. We also wanfThey also give the saturation vapor pressBge saturation
to use the nucleation theorems to predict the behavior of theapor densityp(Ps), equilibrium chemical potentigk, the
nucleation rate as a function of temperature and/(kT). latent heat of evaporation per atdmand the average inter-
For these purposes we have to relate the chemical potgntial action energy per atom in the liquél at these temperatures.
that enters our simulations to the molecular dengignd the  An estimate for the surface tension at these temperatures is
pressureP of the vapor, and hence to the chemical potentialobtained by fitting a second-order polynomial to the data
differenceA. given by Meckeet al?’ The second virial coefficients ob-

At relatively low densities, a Lennard-Jones fluid can betained by integrating the Mayd¥function are tabulated in
described by the virial expansion truncated after the seconthe book by Hirschfeldeet al?® Table Il summaries the
virial coefficientB(T): values used in this work.

* =
class
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TABLE lll. Physico—chemical data for the full potential Lennard-Jones fluid. Apart from the virial coefficient,
the results are obtained from simulations with the truncated poteftisilsy varying cut-off distancgsadding
long-range corrections. The reduced chemical potential is defingd asus/(kT)—3 In A/o.

kT/le Pso®le p(Pgo® nE B/o® d/o pod I'.o%le L/e ele

0.70 0.00131 0.00193 —6.298 —9.8647 1.02814 0.84266 1.1452 6.758 —6.0957
0.75 0.00264 0.00363 0.690—-8.7460 1.02579 0.82158 1.0301 6.5899 0.9069
0.80 0.00470 0.00617 0.184—-7.8209 1.02357 0.79929 0.91823 6.4018 0.7102

V. NUCLEATION THEOREMS —B=p,/p?andp,=p+2Bp?, wherep, is the number con-

centration of dimers. We obtain the following form for the
Now let us establish the form of the nucleation theoremsnrst theorem

that can be used to interpret our simulation results. The deri-

vation of nucleation theorems presented by Eamdolves an alnd
unusual definition of saturation rat® = p,/p3, wherep, (m
and p3(T) are the monomer number concentrations in the T
supersaturated and saturated vapor, respectively. For an idealshould be noted that Oxtoby and Kashchfepresented
gas this reduces to the standard definit®n P/Pg, P and  the first nucleation theorem in the form

P, being the pressures of supersaturated and saturated vapor,

—(1+ N*)( 1—pﬂ (1+0(Bp)?). (25
|

respectively. With these definitions the first nucleation theo- JW* — N 26)
rem reads du
alnd B . whereW* is the work of formation of a critical cluster. This
aIns' =1+N7, (22 form is exact and free of the corrections described above,
T

which arise largely from taking the partial derivative with
wherelJ is the nucleation rate anid* is the size(number of ~ respect taAu and notu.

molecule of the critical cluster. The second nucleation  In the set of simulations wheraw/(kT) is kept con-
theorem(neglecting terms of the order pf p, or smallej is  stant, and the critical cluster size and energy are found as a
given by function of temperature, we use the HSK Ef§8). To refor-

mulate the second nucleation theorem, we notice that since
alnJ . we are again going to neglect terms smaller tBan we can
aT o E[L_ KT+E(N")], (23 work with Eq. (16) instead of Eg. (18), since the
ns n-dependent term in Eq18) is small compared to thBp
wherelL is the latent heat per molecule in the vapor—liquidterm. Starting from the identity
transition, ande,(N*)=E(N*)—N*g(T) is the excess in-
ternal energy of the clustécompared to bulk liquid at pres- dlnd _[dInJ dlnd | (dInS
sureP), which is loosely related to the surface energy of the T A /kT_ aT | 9Ins’ oT AT
; ; T
cluster. Both of the theorems are valid for a nonideal as well 27)
as an ideal vapor.
To convert the first theorem to an appropriate form forand using relationi21) and the relations betwegnB, andp

this study we write presented above E@5), we get the following form for the
second nucleation theorem:

dlnJ _( dInd ) (aAM/(kT)) (aP)

oins' | \oAul(kT)/ L aP ] Lap)s (‘7'23)
d AplkT

ap
aInS’) ' 24 Lok )14 (N* p )
=——[L—KT+E(N*)]+(N*+1 -1
T ol NN+ 1)| o5

The second derivative on the right-hand side can be evalu-
ated using Eq(21) and the third derivative using the equa-
tion of state. The last derivative is evaluated assuming that
the deviations from ideal gas law arise from the presence of
dimers in addition to the dominant monomers in the vaporWe have also neglected terms of the ordep/gf, or smaller,

For the case where temperature is kept constant and the crisince this was done when deriving E@3). The Clausius—

cal size is evaluated as a function dfu/(kT) we use the Clapeyron equationP./dT=L/(TAv) has been used to ex-
virial equation of stat¢16). The second virial coefficient and press the derivative of the vapor pressure in terms of the
the number of dimers in the vapor can be related by assunmolecular latent hedt and the difference of molecular vol-
ing that p=p,+2p, and P/(kT)=p,+p, which leads to umesAv=1/p(Pg)—1/p,.

Ps N Ps i L
kT?p, kTp|2 aT Ava2p|

(28)
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FIG. 4. The connection between the chemical potential difference that

FIG. 2. The ratio of average growth rate to average decay rate, and the . . g S
average energy as a function of size for Lennard-Jones clusters. Results aigfves the nucle_atlon, and the reduced acthlty for a Lenpard—Jones fluid in
ifferent approximationsw and ., are the chemical potentials of the vapor

computed with the truncated and shifted potential. and liquid phases, respectively, apd is the chemical potential at phase
equilibrium.
In the next section, we compare the nucleation rates ob-
tained using the nucleation theorems with the classical exn the critical size is less than or equaltdl. The results of
pression for the nucleation rdt€*° (modified by a factor our simulations are compared with the results of ten Wolde
1/9): et al,*? as well as with classical theory predictions. The con-

ST 2 1643 nection betwee’ andA u/(kT) is obtained using Eq$16)

Jojase \ /—xﬂex -~ (29) and (17) together with Eqs(10) and (21). Figure 4 shows
Tm Sp 3kTp2A u?

wherep; is again the concentration of monomers in the va-

Apl(kT) as a function of reduced activity in different ap-
por, assumed to be given by the virial approximatien

proximations. It is seen that neglecting the,lterm in Eq.
(212), resulting in the often-used approximatidu~A u'

— o+ 2Bp2 =u—us, does not make a big difference, but the nonideal
P P behavior of the Lennard-Jones gas is significant. This has
VI RESULTS been recently pointed out also by Sengeal°

We obtain fairly good agreement with the lowest critical
A. Critical size as a function of chemical potential sizes studied by ten Woldet al, bearing in mind that our
. . ) cluster definition is rather different from theirs. The classical
, Figure 2 shows the results of a set of simulations fortheory(where cluster definition is not specifiedgrees quite
£'=0.02, corresponding td w/(kT)=0.702, for the trun- oy with hoth sets of simulation results, lying between them.

cated and shifted potential. The smooth curve fitted 0 the- . a1l sizes the classical results start to deviate from the

G/D adata indicates that the crilical .S|Z€ IS abou_t 37. _T_heresults of our simulations, giving consistently larger critical
energy starts to fluctuate at larger sizes due to insufficie

=) ! " Nizes. This is no surprise, since the capillarity approximation
statistics. If a more accurate estimate for the critical cluste[Jsed in classical theory is expected to fail for small cluster
energy is needed, it can be obtained with extended SimUIas'izes We cannot increas® much further than we have
tions for this size only. ' '

. " . " since we reach the spinodal @t =0.0245 orP=3.15°
Figure 3 shows the critical size and critical cluster en-

according to Eq(16). The highest pressure studied at this
ergy as a function of the reduced activdy. The uncertainty temperat%re iqu=(2 ()533 g P
63F,.

Ap/(KT) B. Nucleation rate as a function of chemical potential
0.601 0.653 0.702 0.749 0.793 . . .
— -20 The first nucleation theorerf25) can be used to obtain
8o - . .
-40 the nucleation rate as a function Afx at constant tempera-
70 50 ture, once the raté, is known for one valué nq/(kT), and
60 80 if we know the critical size and the density as a function of
© A
=50 -100 3§
) Apd(KT)
40 120 |nJ=|nJo+f (1+N*)(1—£)d[A,u/(kT)],
30 — This study -140 Apg/(KT) P
oo |4 i o 160 (30
. 180 whereN* depends om u/(KT).
0.018 0.019 0.020 0.021 0.022 .
z For the reference ratdg, we use a value reported in the

He oritical o _ | e ot IIiterature. In another recent article, ten Woldeal>® have
FIG. 3. The critical size and the average internal energy of the critical, o4 molecular dynamics to calculate the nucleation rate for
cluster as a function of reduced activitgr chemical potential differenge
The temperature ikT/e=0.741. Results are computed with the truncated the same Lennard-Jones Sy_Stem at the tempgrésﬂl]fe
and shifted Lennard-Jones potential. =0.741 for one saturation ratis=P/P;=1.53, which cor-
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S=P/P TABLE IV. Simulation parameters and results for critical size and critical
1.49 159 1.68 1.79 191 2.03 2.17 2.33 2.49 2.69 cluster interaction energy, different temperatures whia/ (kT) =1.393 05

20 X o kept constant. Classical predictions for sigf, are also shown.
.30 kT/e P‘Ta S z N:im N:Ia <E(N*)>sim
m’P 0.70 0.008996 4.38 0.007 53848 82 76 —243.6 €
§'4O 0.75 0.019594 4.62 0.0139343 46 48 —153.3 €
> * Reference rate J, from 0.80 0.051 24 5.30 0.023 2905 10 29 —9.613 €
£ -50 ten Wolde et al. 1999
----- Classical theory
Using nucleation theorem (NT):
60 £ wem Data for N from classical theory
E x ideal gas NT
4 = Data for N from this stuch . . .
2l / 0 dealgasht Y =0.75 the classical theory gives reasonably good estimates
0.35 0.4 0.45 05 055 0.6 0.65 0.7 0.75 0.8 for the simulation results, but &T/e=0.80 the classical
Au/(KT)

theory starts to fail badly.

FIG. 5. The nucleation rate as a function of the chemical potential differ- ~ 1N€ parameters shown in Table I, and used to obtain
ence. The temperature k§/e=0.741. Results are computed with the trun- classical predictions, have been obtained with the truncated
cated and shifted Lennard-Jones potential. The lines show the rate Obtain‘ﬁbtential using Iong range corrections. The values given do
using the full form of the first nucleation theorem with classical critical size :

(dotted ling and the critical sizes given by our simulatios®lid line). The not rgpresent the system accurately’ espeC|aIIy for the ;urface
crosses and circles show the corresponding result obtained using the fir@nsion. This can be seen from the results of Meekal:
nucleation theorem derived in the ideal gas approximation. which change when changing the cut-off radius fromtb
6.50, the latter being the highest value they used. Thus, the
difference between the simulation results and the classical
predictions is a combination of classical approximations and

responds toA uo/(kT)=0.37. The value of the nucleation inaccurate data.

rate isJo=3.5x10 2%(¢°7), wherer=0"1{ymo?/€ is the

time unit, andm s the mass of the Lennard-Jones atom. This ) )

supersaturation is well below the range we consider, and th3: Nucleation rate as a function of temperature

we use classical values for the critical size, together with Eq.  If we know the nucleation ratd, for one temperature
(30), to extrapolate this reference rate up@/(kT)=0.60, T, we can obtain the temperature dependence of the rate by
which is the lowest value of chemical potential we studied.integrating the second nucleation theoré&8):

This is justified since the simulations of ten Woldeal?

indicate that the classical predictions for the critical size are |n3=|nJo+J
satisfactory at this temperature for 08A u/(kT)=<0.65. To Aul(KT)

We then use the critical sizes obtained from our simulations |\, | \se the classical nucleation ralg=Jyucd KTo /€

to extrapolate the nucleation rate further, into the interval_0 7. Aol (KT,) =1.393 05) as a reference rate, due to the
. ’ —VU.[l, 0 o) — L. y

0.60<Au/(kT)=<0.79, which corresponds to 0.0£& lack of a suitable simulation result for the nucleation rate for
=<0.022 and 2.08 S<2.66. the full potential

Eigure 5 shows the comparison between nucleation rates Figure 6 shows the logarithm of the nucleation rate as a
EEtamgd ESIng3§q?(30)oaggg(i9)./Vl\(/1e_ iISOO?SghOW tk:tat USING" tynction of temperature. We compare the classical prediction

C'alss '?. a- t( ) for "th thlu (kT)=< I. resn:hs "? a inth the results obtained when using the full Eg8) and

nucleation rate curve wi € same slope as the classiC, o, neglecting the nonideality correction. The correction is
curve, as it should. The effect of the nonideality correctlon]cound to be small but noticeable. Nucleation theorems only

1_p/p'. n Eq. (25). Is also de.monstrated. The nonideality give the slope of the curve, and it agrees with the slope of the
correction to the first nucleation theorem is small but not

completely insignificant.

T(dInd

aT

dT. (3D

Au/(KT)=1.39305

-30
C. Critical size and average interaction energy as a %
function of temperature 0
=

We performed simulations at temperatukeB e=0.70, e -45
0.75, and 0.80 at a constafiu/(kT)=1.39305. The rela- 2 50
tion betweerZ’ andA u/(KT) is given by Eqs(18) and(19) £ - — Second nucleationtheorem
together with Eqs(10) and (21) using parameters listed in with ideal gao appr
Table Ill. Table IV shows the simulation conditions as well 60 5 Remencerad,
as the results for the critical size and average interaction 65 Lom e ey
energy of the critical cluster. The simulation conditions are or. o 0'74kT/50'76 078 08

closest to the spinodal &fT/e= 0.8 where the vapor density _ _

in the simulation iSpa’3=O.O51 24 while the spinodal den- FIG. 6. Ehe_ ?]uclltlaatlon ra(;e as a functhnI ofr:he |tem_pe:aturtle. R_esults are
L 3 7 Weh luated the ol ical value f computed with full Lennard-Jones potential. The classical nucleation rate at

sity Is po “0_-06 - e have evaluated the classical value 10l 1/e=0.7 is used as the reference rate in the method based on nucleation

the critical size using Eq(15). At kT/e=0.70 andkT/e  theorems.
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classical curve up to temperatur&§/e=0.75. At kT/e The simulation method and analysis can be extended to
=0.80 where the critical size deviates from the classicamore complicated systems, for example molecules such as
value significantly, the slopes are significantly different.  water, and multicomponent clusters. Also, the cluster defini-
tion we used can be easily modified. Our method has proved
VIl. CONCLUSIONS to be an effective way to gather information about nucleating
glusters. We have therefore demonstrated the power of

We have presented a new technique for obtaining th . . . . .
nucleation theorems in the analysis of molecular simulations.
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