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Kinetics of heterogeneous nucleation for low mean cluster populations
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The process of nucleation is normally described using rate equations for the mean populations of
molecular clusters. This approach can be justified for cases where these mean populations are large.
However, it may be unsuitable in the case of heterogeneous nucleation on small particles if the mean
populations are of the order of unity or less. In such a case, considering the average populations
might be erroneous since the statistical fluctuations in the molecular populations should be taken
into account. Here a stochastic treatment of heterogeneous nucleation kinetics is presented that is
described by a set of master equations, and a modified expression for the nucleation rate has been
deduced. Furthermore, a numerical method for solving the stochastic system has been examined,
and the results show that the rate of nucleation can differ greatly from that obtained with the
traditional kinetics. ©2003 American Institute of Physic§DOI: 10.1063/1.1538605

I. INTRODUCTION of foreign bodies and container surfaces. However this is not
the process responsible for most of the familiar phase trans-

Transformations of the phase of substances are verjprmations described earlier. The atmosphere is not entirely
common; dramatic examples can be found in the atmosphergee of suspended matter, and cloud formation, for example,
where the condensation of water vapor, driven below its deWayes place by a process of so-called heterogeneous nucle-

point, gives rise to the formation of water and ice clouds ofy4ion The water clusters, and ultimately the cloud droplets,
great variety and beautySimilar processes on a grander form on the surfaces of suspended particles called cloud

scale are believed to take place in the vicinity of stars, givmgcondensation nucleiCCN), since it is far easier thermo-

rise to equall_y_ beautiful dusty nebulae. Domest_lc examp.lesc’iynamically to do this than to form a critical cluster homo-
are also familiar, and processes such as melting, freezin

5 -6 . .
boiling or condensation are common in industry. However%eneousbg' Heterogeneous nucleation has been previously
investigated via free energy calculation approath.

the rate at which these processes occur is not easy to prediE? ) . ) S

Most of these phase transformations are first order, ~Cloud condensation nuclei are solid or liquid aerosols,
which is to say that a latent heat is transferred during th@ften only a fraction of a micrometer in diameter. Now, the
process, and a surface tension exists between the two phadBgtastability of a vapor is measured in terms of its super-
at equilibrium. The transformation usually involves the SaturationS, defined as the ratio of the vapor pressure to the
emergence of assemblages, or clusters, of molecules wisaturated vapor pressure, and the critical supersaturation re-
characteristicsdensity, symmetry, ejcof the new phase. quired to drive nucleation at a given rate is a measure of the
However, these clusters are not necessarily all thermodyease with which critical clusters can be formed. While a
namically more stable than the original phase. Small clustersjalue of S of order 10 might be necessary in some circum-
with high proportions of “surface,” tend to be unstable. For stances to drive homogeneous nucleation, ddiy0.01 is
moderate degrees of metastability of the original phase, thersufficient to drive the heterogeneous process if CCN surfaces
exists a “bottleneck” in the process, corresponding to theare present.In the atmosphere, supersaturations are usually
need to form a so-called critical molecular cluster. Once ongimited to these values, so heterogeneous nucleation is the
has beep f_ormed, further growth is t_hermo_dynamically favorgominant process.
able. This is the process of nucleation, driven fundamentally  ; ;5 generally considered that the kinetics of nucleation

by thermal fluctuations. However, for greater degrees Ot/vere correctly described by Becker andrbg!® almost 70
metastability of the original phase, the phase transformatiog}ears ago. This solution applies to the formation of clusters
can become deterministic, with no thermodynamic bottle-Of a sinale molecular species. by a process of single mol-
neck. The process then becomes spinodal decomposition. 9 P Dy ap g

Most research into nucleation is concerned with the ho_ecule attachment and loss. Usually, the slightly unrealistic

mogeneous process, where the metastability of the originzﬁteady s_ta_\te S|tuat|0r_1 is assumed, vv_here_ the supersaturation
phase is overcome without the presence of special nucleatidf the original phase is held constant in spite of the consump-

sites in the system. The critical clusters form in the absencHOn of material in the formation of new phase. Nevertheless,

this is a reasonable approximation when the rate of consump-
) tion is low, and so the processes of homogeneous and het-
aAuthor to whom correspondence should be addressed. Electronic mail: leati id dtob I ted
j.bhatt@ucl.ac.uk eérogeneous nucleation are considered to be well represente

YElectronic mail: i.ford@ucl.ac.uk by the formula for the nucleation rate,
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Bin; not intended for treating small systems with tiny mean popu-
J= 143 (/8 1) lations of molecules. The possibility of low mean popula-
i=2j=21Y]/Pj tions encountered in precipitation in small droplets has been
where; is the rate at which monomers attach to cluster ofconsidered by Manjunatit al, through stochastic simula-
sizei, vy; is the rate at which they detach from the sametions involving a series of the so-called product density
cluster, and ., is the maximum cluster size allowed in the equations? Dimer formation taking place on the surface of
system. The growth ratgd; are proportional to the monomer tiny dust particles in low density conditions of interstellar
populationn;, since they represent monomeric attachment.medium and thin atmospheres has also been previously
The Becker—Ding expression, Eq(1), is obtained by studied®
solving a basic set of rate equations describing the difference In this paper, we consider the complete solution to the
betweeng;n;, the number of growth events from sizgo heterogeneous nucleation kinetics of growth and decay of
(i+1), andy,, , the number of decays from size1) to  clusters of various sizes, where the possibility of fluctuations
i, is properly taken into account. This requires us to set up and
solve master equations for the probability distributions of
J=BiNi— Yi+aNis1, 2 cluster populations. We consider a simple set of rate coeffi-
wheren; is the steady state population of clusters of gize Cients which allow us to perform the computational tasks in
These equations are held to apply fofrom unity up to ~an efficient manner, and contrast the resulting nucleation rate
ima— 1. The Becker—Diong solution applies when the With the Becker—Ddng solution. We expose the conditions

growth ladder is terminated by the assumption that clusters dtécessary for large differences to exist between the “classi-
size it 1 do not decay, hencd=8; n; . For many cal” Becker—Daing solution and the more appropriate “sto-
max ~max

realistic situations, the solution is insensitive to the choice thaSt'C" solution to the master equations.
imax, @S long as it is large enough.

However, the Becker—Ding approach makes an as-
sumption about the kinetics which may not be valid. The ratdl. KINETICS OF HETEROGENEOUS NUCLEATION
equations are what we might callhssicalin that the number
of growth transitions from sizeto (i+1), for example, is
taken to be the population ofclustersn; multiplied by a rate Consider a host particle surrounded by gas phase mol-
coefficient8; proportional ton,. If n, were a precise con- ecules(monomers that occasionally strike and stick to the
stant, then this assumption would be valid, but in fact allparticle. Once adsorbed, such a monomer may move around
cluster populations in the problem, including, display the particle. It may encounter another monomer and the two
fluctuations about a mean value, since the processes ofay form a dimer. The growth of the adsorbed molecular
growth and decay occur as stochastic events. As we shatluster may progress further due to attachments of more
show in the next section, the growth rate actually requires ughonomers. The cluster may also decay by loss of monomers,
to evaluate the mean of the product of the populations ofnduced, perhaps, by energy input from the substrate. Clus-
monomers and-clusters, rather than the product of the ters need to reach a critical siz& before they will, on av-
mean. erage, be able to grow further. In other words, for clusters

The error involved by the neglect of fluctuations is small consisting ofi molecules, withi <i*, the probability per unit
when the populations of clusters are large, by the usual stdime for a cluster to grow, divided by the probability for it to
tistical arguments. This is almost always the case in practicdbse a moleculddecay is less than unity. For sizes greater
cases of homogeneous nucleation: the system is a sample tbfan the critical size, the ratio of growth to decay probabili-
vapor, say, in a macroscopic container, so that the number dies is greater than unity. Most clusters tend to languish in the
monomers present in the system is huge. However, when ttgubcritical size region, and only occasionally do they man-
process under consideration is heterogeneous nucleation takge, by a lucky sequence of growth steps, to reach the critical
ing place on the surface of a microscopic particle, the possisize, and thereafter grow.
bility arises that populations could be small. An experiment  Traditionally, such a system is modeled using the rate
involving vapor condensation could be conducted in a macequations,
roscopic container, but the actual “reaction vessel” would be
the surface of one of the many particles suspended inside the
container. In experiments involving heterogeneous nucle-

tion, therefore, it i ible for the Becker~IDg kineti . . . :
ation, therefore, it is possible for the Becker-+Ig kinetics for i=2, wheren; is the mean population of clusters of size

to be inappropriate. . . .
nappropriate. . . . . i in the system.B; is the rate at which molecules attach
It is this possibility that we investigate in this study. o : .
S . hemselves to clusters of sizeand vy, is the rate at which
There have been some attempts at considering the discrete !
. . . .molecules are lost from clusters of siz& he growth rateg;
nature of the nucleating molecules with the aid of stochastic . .
i : . are proportional to the number of monomersin the sys-
arguments. In particular, Ebelirg al. have examined a mas- :
. . . . . tem, so that we can write
ter equation approach in dealing with the nucleation
kinetics™ To a limited extent, it is similar to what we pro- —8'n 4)
. . . ﬁ| :8| 1-
pose in the next section of this paper, but the theory of Ebel-

ing et al. gives only a general picture of the kinetics, and isFori=1 the dynamics are expressed by

A. Classical rate equations

n.
d_tI::Bi—lni—l_7ini_ﬁini+7i+lni+l (3
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dn, where the angled brackets represent an averaging over the
gt )T AMT 21+ 295N~ (BaN2— ¥3Ns) fluctuations and the cluster populations are written in upper
caseN; to remind us that they are fluctuating stochastic vari-
—(B3Nz—ysNy)— - - - _Bimaxnimax ables. Equatioifs) would similarly be replaced. We shall see
_ in the next section how such equations can be derived from a
=] = AN = 2(B1N1— ¥2Ny) stochastic treatment of the populations, and how the averages
imax— 1 can be evaluated.
- ;2 (BiNi=YieaMiv) = Bi N, (5

B. Stochastic approach

wherej is the source rate of monomers attf_;lching themselves |n the stochastic approach we consider a probability dis-
to the surface from the surrounding medium ands the  tribution that describes the state of the system in terms of the
evaporation rate of monomers from the particle surface.  exact populations of all the allowed cluster sizes. Let the

When fluctuations in populations about mean values ar@robability that the system containd; monomers, N,
taken into account, it would seem reasonable that the ratgimers, and in generalN; i-clusters at timet be

equations3) should be replaced by something like W(Ng,Np, .. Ni, NG ) =W({N};t). In order to
d(N;) ’ , limit the number of elements in this array, we introduce a
gt~ Bi-1NNi-1) = 7i(Ni) = B (1N maximum cluster sizé, .. We also limit each\; to be less
than or equal toN\["®. The rate of change of this probability
+ 7+ 1{Niy1), (6) is then given by

dw
H=jW(N1—1, )W) NN FD)W(NG A+, ) = ANGW(C =)+ B1(Np+2) (N + 1)W(N +2 N, —1, .. )

imax—1

— BNy (Ny = 1)W(---)+ Zz B/ (Nj+1)(Ni+D)W(Ny+1, ... Ni 1N —1,...)

I'max

+B (Ng+L)(N,  +DW(Ny+1,... N +1)— ZZ BINNW( )

| max [ max

+ 95(Noy+ 1)W(N; — 2N, +1, . . .)+Z3 yi(Ni+1)W(N;—1, ... Ni_;—IN;+1, .. .)—_22 YiNW(--+).  (7)

On the right hand side of the above equatibrhas been of the i-clusters, that is the mean populations. That is,

omitted for simplicity. The dots represent values of tde ~ W(ny,ny, ... ,n;...)=1 and all other elements are zero.

that are the same as on the left hand side. Formally, this is represented, using the Kronecker delta, as
The processes considered are the growth transitions 1 e

+(i—1)—iand I+i—(i+1) dge tq monomer attachment, W(Ny,N,, .. -):H S - ®)

as well as the decay processes(i—1)+1 and (+1) i=1

—i+1 due to monomer detachment from the cluster. TheI the steadv stat d this classical limit Vi
attachment and detachment of dimers, trimers, and higheP € steady state an is classical limit, solving EQ.

size clusters are neglected. The first two tefthe j termg would be equwalent_to solving Eqg3), (5), and (1), as
describe the addition of a monomer from the surroundin Sshown in the Appendix.
95yt Eq. (7) can be solved by some means, knowledgé/of

Iegdmg to a monomer population chantjg—N,+1. The would allows us to generate probability distributidRgN;)
third and fourth terms represent loss of a monomer from the population of-clusters

particle surface due to the population juldp—N;—1. The

rest of the terms are constructed using similar arguments for N
monomeric attachment and detachment to and from dimers, p.(N)= >, > W(Ny, ... Ni, N oD 9
trimers and in generdtclusters. There is a term fo8; , (i#1) Nj=0

but no term involvingy; .4 since clusters at sizg..xmay  TheP, are likely to look like Gaussian distributions for large
grow, but the population at this size receives no additions;, or Poisson distributions for smail . Ideally, the values
from the decay of the next larger cluster. This acts as thef alll theNJT”aXought to be infinity for a “perfect” evaluation
boundary condition of the problem. of P;(N;). However in practice, as we shall see in Sec. Ill C,

The classical limit corresponds to the probability distri- satisfactory results may be obtained when Nf@x are lim-
bution W being unity for only one set of possible populationsited to reasonably small values.
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It is also possible to calculate joint probabilities, such aswherei* is the critical size, where the rate coefficients for
P, (N;,N;), which is the probability that we findN, growth and decay are equaBi= ;). We are interested in
I-clusters andN; i-clusters in the system. These distributionscalculating the modification factor.
are given by

Pi (N, N;) ll. CALCULATIONS
N A. Parametrization
:j;i sz__:o W(Ng, - Njy NN ). The master equatior(¥) are driven by the input param-

etersj, \, B , andvy; . In order to investigate the problem of
(10) heterogeneous nucleation in small systems, we must care-

If the steady stat®/ are known, it is possible to calculate fully choose the input parameters that are likely to lead to

the nucleation rate. This is done by summing all the probSmall cluster populations. _
abilities of growth from any sizé to sizei+1 and subtract Let us introduce a size parametgrwhich may be taken
those for decay in the opposite direction to be proportional to the surface area of the host particle. The

coefficientsA and vy, are the decay rates of monomeis (
B , =1) andi-mers {=2), respectively, and hence may be
‘]_{%} (BININW(ND = 7i4aNi s WHNGD), - (D) taken as independent of the system size. The attachment rate
j of monomers onto the particle surface, however, should

which by introducing the notation increase linearly with. It is useful to consider temporarily
the dynamics in the absence of any dimer production, in
(Niy=2 NiPi(N)) (120 which case the mean monomer population would be given by
Ni a balance betweenand\, namely,(N;)=j/\. If j, is the
and value ofj at £&=1 then we can write
j=¢&lo, (18
<N|Ni>=Nl2N_ NiNiPyi (Np, Ny, (13 so that
allows us to write (Np)= Jxof. (19
_ Bi{NiNi) =%+ 2(Niva)  ifi=2 (14) For convenience, let us postulate tigat 1 is the system
Bi(Ny(Nj—=1))— 7y, 1(Nj, 1) ifi=1. with a nominal mean monomer population of unity. This

imposes the conditiofy=\.
For simplicity, we assume the growth rgé to be in-
endent of the cluster sizei.e.,B1=85=--=8{ . On

Any value ofi=2 in the first of the above expressions would
give the same result in the steady state as the nucleatio({ﬂep
max

current should be independent of cluster size. If one iJsesth ther h ' will be i | tional tc o i

=1 to compute the nucleation rate, a slight modification is € other ahndﬁl;'ik V:”h %mr\]/ersey [()jropct))r g)na ¢ since '.”

required as in the second expression in @d), since having measures the likelihood that an adsorbed monomer will en-
ounter an adsorbeidmer. As the system gets bigger, this

just a single monomer in the system cannot give rise to . C
nucleation current towards the critical size. In contrast, th Ikelihood would diminish. Furthermore_, we m_ayfﬁ_{ such
that até=1 the mean growth rate of aAmer is unity. Re-

nucleation rate given in E@2) according to the standard rate , , .
Eq. (3), in the same notation, reads membering from Eq(4) that 8;=B/(N;), this means that
B{=1 até=1, and in general

Jas= BIIND(NDY = i+ 1(Ni 1) 15 1

Bl=F - (20

The choice of the parameteys must satisfy the require-

One would expect relative fluctuations in the populations to
become negligible when the populations are large, so that a

mean of a product becomes the product of the means. |t hent that at the critical siz¢, a cluster is as likely to decay
therefore evident from the comparison of E¢l4) and(15) L : oy )

. L as it is likely to grow, i.e.,y;»=B.x(N). With the above
that the standard rate equations are valid in the large popu-t ted choi " and (NS, thi ! h —1 at
lation limit. It is also possible to visualize how the standards_aleI g Ozjcetr?.ﬁi ﬁn Ifj é>’ " 'S ]Eneans altyi*_h athé
result for the nucleation rate must be modified for small sys-, = ndeed, nis snou e true for any value & s the
tems. By writing decay rates are independent of the system size. The

i-dependence of; may be chosen on the grounds that small
Bl {NIN})=(1+¢€) B/ (N1 )(N;), (16) clusters are more likely to decay than large clusters. We

therefore choose
the expression for the rate given in Ef) can be used to see

L *x\p
that, to a good approximation, yi:(i_) , (21)
i*
Jsmallz‘]largg]._.[ (1+e), (1 Wh_erep is some constant to pe decided. Er_1t|rely for compu-
i=1 tational convenience, and without suggesting that the model
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should represent a real system, we shall chqos€ and 12
i* =2. This form of y; ensures that a cluster below the criti- Y
cal size (<i*) has a high probability of decay, whereas 1
those above the critical sizeé>*i*) will find it easier to 0.8
grow. ’ —»- Stochastic
The relative values of, (and \) and B/ control the ~ 06 - -~ Classical
degree to which the mean monomer population is close to —+—J(clas)/J(stoch)
the estimateg(19). We shall explore cases whejg>1 and 0.4 1
jo=1 in Sec. lll C.
0.2 -
B. Classical solution 0 :. * X
The most convenient way of deducing the classical 3 4 3 6 7
nucleation rate for a given set of parametgys A, &, Bi, ! max

and.% IS throth.the e_xpressum). However thml appegr- FIG. 1. Nucleation rate as a function if,, with i* =2, jo=A=1, and¢
ing in that equation still needs to be known. Although in the:l. It is reasonably safe to chooisg,= 4, since the results obtained with a
largej limit expression(19) for (N;) may provide a reason- higheri,.,=86, for instance, are approximately the same.
able estimate, this is not guaranteed to be true in general. A
better method of finding, is as follows. ) _ o )

Equation(5) in the steady state may be written, with the ~ Strictly speaking, the multidimensional arr&y/({N;})

help of Eq.(2), as consists of an infinite number of elements, but for computa-
) ) tional purpose we may set an upper limit on the maximum
0=Joé— ANy =23 = (imax—2)I—J number ofi-clusters the system can possess at any time. In
=joé= AN~ (imaxt 1)J (22 other words the array W({N;}) takes the form
o . _ W(ONT#,0:NZ™, ... ,ONT™9. These values
whereld is given by Eq.(1). Let us assign a function N R Nln:naa); should be decided by educated guess
F(ny)=joé— AN~ (imaxt 1)J. (23)  such that all of they,, probability distributions in Eq(9)

This function falls with increasing, . As an initial approxi- ~ die down to negligible levels a¥; =N at the end of the
mation, we providen; = j,&/\, which in all practical cases is !térations.

at least a slight overestimation of the actual valuapf We Steady state is considered to have been reached when alll
then iteratively search for a zero of the functigign,) by  the elements oW({N;}) have converged within a very small
subtracting a very small amouftypically ~10 6) from the  tolerance. The nucleation ratésvith different values of in

trial value ofn, and evaluating a new value gf(n,). This  EQ. (14 will normally evolve differently with time, but
process is continued until a solution is found within a veryeventually they will all converge upon a common value. This
small tolerance. The final value of, that corresponds to convergence of with different values of in fact serves as a

F(n;)=0 can then be utilized in Eq1) to find the classical “double check” for ensuring that a steady state has indeed

value of the nucleation rate. been achieved. _ .
In Fig. 1 we plot the classical as well as the stochastic
C. Solving the master equation nucleation rates obtained under different valueg,g§, with

_ ) ) fixed values ofi* =2, jo=A=1, andé=1. As can be seen,
Given all the necessary parameters given in Sec. Ill Athe nucleation ratd is not very sensitive td,,. The sto-
we are in a position to solve the master equatighsvhich

should ultimately render the stochastic solution to the sys-
tem. Solving Eq.(7) analytically does not appear to be a 0.6
feasible task. We therefore look for an appropriate numerical

technique to act as a substitute. jg‘g;)
Computationally, we discretize tinteand replace thdt 04 | *P3§N3§
by a very small but finité\t in Eq. (7). ThedW(t) may then 4 ¢ P4(NA)

be replaced by (t+ At) —W(t), thus allowing Eq(7) to be
solved iteratively. As an initial condition, we set
W(0,0,0,...,0;t=0)=1 with all the remaining elements of
the arrayW({N;}) set to zero, specifying an empty system to
start with. The system thereafter evolves in time until a
steady state is reached.

Equations (7) represent a set of coupled differential 0 5 10 15 20
equationsi .y is the largest size of cluster that can form on N
the particle, and needs to be specified explicitly at the begin- ] o
ning. In principl, it shouid be large enough So that the conf,C, % Aupies exarpe of otably deviuior () ont vaues.
tribution due to terms withy,t+ 1 in the series appearing in eye. In this exampleNI™= 16, NJ¥= 12, etc. were sufficient to give sat-

Eq. (1) is negligible. isfactorily smooth probability distributions for the mean populations.

P;(N;)
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-8 Stochastic
X-X Classical

Nucleation rate, J

-8 Stochastic
*-X Classical

Nucleation rate, J

10

0.001 0.01 0.1 1 10
&

FIG. 3. Nucleation rate as a function of the size paramétéor the j, FIG. 5. Nucleation rate as a function éffor the jo=\=1 model. Differ-

=\=100 model. The prediction of rate equation approach is shown withence between the stochastic and classical models emerges gelbw
cross signs, and the squares are the results of the stochastic model presented
here.

the stochastic nucleation rate does not differ considerably

) ) o B from its classical counterpart in this range, and for these
chasticJ decreases slightly with increasimng,,, but the es- parameters.

sential message is that a valueigf,=4 may be trusted in In Fig. 5 the nucleation rate is plotted again as a function
order to demonstrate at least the qualitative behavior of thgy ¢, but this time withj ;=\ =1, the rest of the parameters

system. - o being the same as in Fig. 3. The mean monomer population
“An example of the probability distributionB;(Ni), as  for the same system is plotted in Fig. 6, and now we see that
defined in Eq.(9) and calculated once the steady state hagpe stochastidN;) does differ from classicalN;) once &
been reached, is shown in Fig. 2;(N,) is the probability 4565 pelow unity. Approximately below the sige 1, where
distribution for the monomer populatioRy(Ny) is the same  the mean monomer population is below unity, visible differ-

for dimmers, and so on. _ _ ~ ence between the classical and stochastic nucleation rates is
Figure 3 shows the stochastic and classical nucleatloggain evident in Fig. 5. The linear dependenceJafiith

rates as a function of the particle size parametédr jo  respect tog exhibited in the classical theory is lost when one

=A=100. The calculation has been performed With=2  eq|s with very small particle sizes. Note that the stochastic

andima,=4. Figure 4 shows the mean monomer populationyoge| gives a smaller nucleation rate, but a higher mean

for the same system as predicted by the two models. There ig,jation of monomers than the classical prediction, since a
a good agreement between the two models for the monomefigher nucleation rate would leave fewer monomers on the

population in this limit ofj;>1. The nucleation rates in Fig. g rface.

3 according to the qu model_s, however, start diverging as The ratiosdyussical Jetocnasicderived from both caseg,
falls below 0.1. It is interesting to note that the monomer_, — 109 andj,=\ =1, have been plotted in Fig. 7. This is
population betwee=0.1 andé=1 is below unity and yet

@8 Stochastic
%-X Classical

&8 Stochastic
»-X Classical

FIG. 6. Stochastic and classical mean monomer populatidp), as a
FIG. 4. Stochastic and classical mean monomer populatiNR), as a  function of ¢ for the jy=A=1 case. Unlike thg,=X\=100 case, some
function of ¢ for the j =\ =100 model. Both models predict essentially the difference can be seen here between the mean populations according to the
same mean populations for this choice of parameters. two models.
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1000 extended easily to include the loss and gain of dimers, trim-
E{0= 100 ers, etc., solving which would clearly require a much greater
) <-j0=1 deal of computational power.
< 100 A
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APPENDIX: REDUCTION OF MASTER EQUATIONS
TO RATE EQUATIONS
1 : N R © It is possible to show that the master equati¢risdo
0.001 0.01 0.1 1 10 indeed reduce to the rate equatié®sand(5) in the classical

£ limit of relatively large populations. To do this, let us define

an operatoO such that
FIG. 7. The ratio of classical vs stochastic nucleation rate calculated as a
function of ¢ for the jo=A =100 andj,=\=1 models.

O-f= > N-f, (A1)
{Nj}=0

. . . . . i.e., we multiply the given termf by N, (where |
simply the factor by which the classical Becker—+ibg ki- —1,...j..) and sum the result over all tHa\;}. Let us

netics overestimates the nucleation rate as compared with the ‘ . . .
! NS perform this operation on both sides of E@). This makes
stochastic model presented here. The overestimation grows .
. . e left-hand side read as

as we look at ever smaller size#) (of the host particle. Also,
the ratio is larger for thg,=A=1 calculations, compared “ dW({N;})  d(N;)
with the j o=\ =100 case. This is due partly to the fact that {N-E}:=O Tat~ at (A2)
a large value ofj, produces a mean monomer population '_ _ _
closer to the classical prediction as discussed in Sec. Ill A.which is equivalent to the left-hand side of E¢8) and(5).

The classical treatment requires there to be a large popdNow consider the consequence of this operation on the right-
lation of the nucleating species so as to be able to use a me&and side of Eq(7). On the right-hand side, one needs to
value of the populations in treating the kinetics. However,(treat separately the caseslof1 andl>1 since there are
when the mean monomer population is below unity, there arglifferent rate equations for the two caseshof and N, (I
instances when there are no monomers present on the surfagél) in the classical picture. Let us consider terms propor-
and only by a lucky chance are there more than one mongdional to the parametes \, B, and v one by one and try
mers present. Since the classical kinetics ignores this discrete compare them with those found in the rate equati@s
nature of the molecular species, it assumes a higher reactigind (5).
rate between the molecules, hence yielding an overestimatgd
nucleation rate.

The j terms
a l=1

Operating the first term in Eq(7) by O along with |
IV. CONCLUSIONS =1 will render

We have studied the problem of heterogeneous nucle- )
ation under conditions where the mean populations of the {N%::O INg W(N =1, ...).
nucleating clusters may be of the order of unity. The tradi- ) N
tional rate equation approach, which treats the kinetics i order to bring the probabilityvin the same form as on the
terms of the mean cluster populations, is likely to fail in suchleft-hand side, that isW(Ny,N2, ... N ), we can make
a limit. To investigate this, we have proposed a new masteihe substitutionN;— N, +1, which is what happens to the
equation approach that takes into account the stochastic flusaonomer population due to thjeterm. The above notation
tuations in cluster populations, and replaces the classical rawll then turn into
equations. o

A method for solving the master equation numt_arically 2 J(Ng+DW(Ny, ... )=](N;+1). (A3)
has been explored. The results of the model calculations per- {Ni}=0
formed here indicate a large difference in the nucleation rate$ne sum over this new; label should run from-1 to e,
as predicted by the stochastic and classical treatments as thgt clearly the unphysical first term in the series vanishes, so
hucleation site becomgs very small. However, if the systenthat the lower limit is indeed zero.
is large, }h'e stqchgstlc treatment reproduces the classical Operating upon the second term in E@) with O will
Becker—Daoing kinetics. give

For simplicity, only monomer attachment and detach- P
ment to the nucleating cluster has be_en allowed in the sto- > N, W(---) = —j(Ny). (A4)
chastic model here. The master equation can nevertheless be  {Ni}=0
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In the classical limit, the upper cad¢, together with
angled brackets is replaced Iy, so from Eqs.(A3) and
(A4), the net result of applyin® on both thej terms in Eq.
(7) is

jni+j—jn;=j. (A5)
This is precisely what we have as th¢ term” in the rate
equation(5), which was written down explicitly for the mo-
nomeric (=1) population.

b. I>1

If | is not equal to 1, then the operation dueQowill
make the first term in Eq.7) read

]

>IN WIN; =1, ),
{Nj}=0
wherel # 1. This time the substitutiodl;—N;+ 1 will lead
to

EOJM W(Ny, . ..)

=J(Np). (AB)

The second term of the master equation under the operatig

of O will be similar to expressiotiA4),

—J(Np).

Hence the sum of Eq9A6) and (A7) will be zero, and
indeed, there is npterm in the rate equation8).

—{Nz}‘,zole W(...) = (A7)

2. The \ terms
al=1

If we apply the operatod to the third term of the master
equation(7), we have

©

of Z AN (N;+1) W(N;+1,...).

This time we make the substitutidd; —N;—1 so that the
above expression is converted into

©

{NE A(N;—1)N; W(Ny, ...)=

A((N1=1)Ny).
(A8)
The lower limit for the sum over the shifted variabid;

Kinetics of heterogeneous nucleation 3173

b. 1>1

The third term of Eq(7) under the influence od will
this time become

o0

> OAN(N;+1) W(N;+1,...),
NT=0

and the substitutiolN;— N;—1 will make it

N;:O)\N|N1 W(N;, ...)=X(N;N,). (A11)
The operation due t® on the fourth term of Eq(7) will
give us—X{N;N;). Hence the lambda term will vanish for

thel>1 case, and is absent in the rate equat®)ralso.

3. The B] terms

a l=1
If we operate on the fifth term in the master equaiion
with O, usingl =1, we get
_2= BiNi(N;+2)(Ny+1) W(Ny+2N,—1,...),
hICh with substitutionsN;—N;—2 andN,—N,+1 be-
mes
B1(N;—2)(N;—1)N;y W(N4, ...)
{N;j}=0

=B1((N;—2)(N;—1)), (A12)
where we have used the fact that= 8/ N;. The sixth term
can be operated on without having to do any relabeliniy,of

"oy AININI(NI = 1) W)= = B1(Ny(Ny ~ 1)).
(A13)
The seventh term will however require relabeling in order to

bring theW in the desired form. We first operate on it with
to get

®  imax 1

> BINy(N;+1)(N;+1)

NiF=o =2
XW(N;+1, ...

and then use the substitutiohg —Nq—
N;;1—N;;1+1 in order to obtain

©

|Ni+1!Ni+l_1! . ');
l, Ni—>Ni_1 and

'max 1

> BI(N;—1)NjN,

should be+ 1, but we can extend this to zero without chang-{Ni}=0 =2

ing the result of the summation.

Performing the operatio® on the fourth term of the
master equation will give us

©

— E ANNy W(--

» = —(N3).

(A9)

—1

imax
XW(Ng, ... N \Nijq, ...)= 22 N;—1)N;).

(A14)

With some thought, it is possible to realize that resalt4)
will hold true for any value of in the =,_,'mac ! series. A

Once again, to see the correspondence with the classicaimilar procedure on the eighth term of H@) will give us

model, we replace the angled brackets and the uppertase

with the lower case,, so we are left with the net result
A(nZ— (A10)

This is the\ term found in the monomeric rate equatic@).

ny)—AnZ=—An,.

Bi ol (N1

N, Q (A15)
max
which essentially completes the series in E414) from i

=2 10i s Finally, we operate on the ninth term withand
obtain
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*© I'max

- Z’z Bi(N1N;),

(Al6)
which again holds no matter what valueiaé chosen in the
3 ,'max series.

Hence the sum of all thg; terms in Eqs(A12), (A13),
(Al4), (A15), and(A16) will be

'max I'max

2, Bil(Ni= 1N = 2, Bi(NaNi)

i max

- > 23.NNNW<

{Nj}=0i=2

+ B1[((N1—=2)(N;—1)) = ((N;—1)Np)]. (AL17)
If we now replace the upper cabkwith its lower case coun-

terpart, discarding the angled brackets to reflect the classical

limit, expression(A17) is easily reduced to

J. S. Bhatt and 1. J. Ford

©

> BININ(N;—1) W(...)
{Nj}=0

=B ((N;—1)N,) if 1=3 (A19)
and

> BiNy(Ny—1)(Np+1) W(--+)
{Nj}=0

=B ((N;—1)(N,+1)) if 1=2. (A20)

The sixth term in Eq(7) will not require any relabeling di

after being operated on i and regardless of the value lof
it will become

— > BININg(N;—

1) W(--+)==B1((N;—1)N)).
{Nj}=0

(A21)

i max
- Z Bini—2B.(n;—1). (A18) Hence forl=3 the sum of the positive and negatige
terms, given in expression®19) and (A21), is zero. The
It can be seen that these are fheerms in the rate equation rate equatior(3) written down fori=3 will surely have no
(5) provided thatn; —1~n; in the above expression. This is B, terms. For the special case bf 2, the sum of expres-
a fair approximation in the classical limit where the mono-sions(A20) and (A21) will leave B,(n;—1) in the classical
meric population is high. language. Considering the rate equati@ for i=2 case,
one would find the tern8,n,, which is approximately equal
b. I>1 to the stochastic resu8;(n;—1), provided thah,;>1. This
Additional care is required when one deals with the casdS @ valid assumption in the classical limit, and so b
of 1#1 in the 8/ terms. This is due to the serigg_,max  €rMS in the stochastic master equation are reducible to those
involved and unlike thé=1 case, contributions due to dif- in the classical rate equations when the mean populations are
ferent values of need to be examined explicitly. large. _ _ _
Consider the fifth term in Eq7) first. With the operator Let us now consider the seventh term in E@. With
O applied, it will read operatorO acting on it, it would read

*© imax—1

y 22 BIN(NFD(Ni+1)

{Ni}=0 i=2

©

;_ BINY(N;+2)(Ny+1) W(N;+2Np—1, ...

and the substitutiond;—N;—2 andN,— N,+ 1 will make XW(Ny+ 1, N+ LN =1,
it Consider the expansion of the second summation here,

[’

; ByN(Np+1)(Np+1) W(N;+ 1IN, +1Ng—1, .. .)

+{ ; BiNJ(Ng+1)(Ng+1) W(N;+1,... Ng+1N,—1,...)
Ni :0

]

+ > BIN(Ng+1)(Ng+1) W(N;+1, . ..

o Ny+1Ns—1, ..
el

DR

With appropriate relabeling as done before, and rememberrhe operato© will reduce the eighth term of Edq7) into

ing that 8;=B{ Ny, it is possible to show that the this term
reduces to %
. {N%O Bl Ni(Ng+D)(N;  +1) W(N;+1,... Ny +1),

—1)+ ;2 Bi{NiN}).

i#l-1]

Bi—1{N;—1(N;+ 1))+ B (N|(N . .
and with the relabelingN;—N;—

will give us

1 and Nimax_>Nimax_ 1

(A22)
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[’

{g:o Bl NININ;  W(--+)

=Bi (Ni N if 1=2,. jipac 1,

» (A23)
—DNGN; W(--)

{NiJ=0 max i max

=B <N

max

-1y i 1=

imax-
A similar argument applies to the ninth term of Ea@).
The operatof) will reduce this term to
imax
- |:22 Bi(NiN;)
(A24)

i max

—2 EB.NNNW(

regardless of the value df Hence summing the seventh,
eighth and ninth terms of the master equation, given here as
expressiongA22), (A23), and (A24), and replacing the up-

per caseN with the lower casa in the classical picture will
give us B,_1n_1—Bin;, wherel=2, imax- These are
the B; terms in the classical rate equati8).

4. The y,; terms
al=1

The effect of the operato®, with |=1, on the tenth
term in the master equatigi@) will be

{N_E}‘;O ¥aN1(Na+1W(N; = 2N, +1, .. ),

and the relabelingN;—N;+2 andN,—N,—1 will give us

{N;:() ¥2(N1+2)Ny W(--)=y2((N1+2)Np).  (A25)

The eleventh term of Ed7), under the operation due to

O will become

*® i max

2%

{Nj}=0i=3
XW(N;—1,... Ni_;—1N;+1,...),

which with the relabelingN;—N;+1, N;_;—N;_;+1, N;
—N;—1 becomes

(N;+1)

* i max

)= 2 r{(NF DNy,
(A26)

The last term in Equatior(7) is more straight forward

and does not require any relabeling, so the ope@tcwill
make it

i max

> E yi(Np+1)N; W(--

{N;}=0i=3

*© I'max

—i:EZ ¥i{N1N;).
(A27)

Replacing the angled brackets and the upper baaéth the
lower casen in the classical limit, the sum of all thg, terms
expressed iA25), (A26), and(A27) will be

'max

D viNgN W(. L) =
{NjJ=0 i=2
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imax imaxfl
2 72”2#23 YiNi = 2yznp+ 22 Yit1Ni+1. (A28)
i= i=

These are precisely thg terms appearing in the monomeric
rate equatior(s).

b. I>1

If we operate on the tenth term of E) with 0, we get

0

> vaN(Na+DW(N;—2N,+1, .. ),
{Nj}=0

and with the relabelingN;—N;+2 andN,—N,—1 it be-
comes
22 o 72NNz WC )= 72(NiN). (A29)

{Ni}

If operated upon by, the eleventh term of Eq7) will
read

©

2= 243 ¥iNi(N;j+1)

XW(N;—=1, ... Ni_;—1N;+1,...).

With suitable substitutions, it can be shown that this expres-
sion is equivalent to

YI(NJN = 1))+ 914 1Ny 1 (N + 1)) + 2 i (NIN;).

I95| I+1
(A30)

Finally, the last term in Equatiof¥) under the operation
due toO will appear as

I'max

_242 Yi{NINp),

i max

—2 Zy.NNW(

o 2 (A31)

wherel =2 Imax- Hence the sum of the all thg terms
given in (A29), (A30), and(A31) will be

YI{NI(N; = 1))+ ¥4 2N 21 (N + 1)) — »i(N|N))

— YN 2Ny,

which under the classical limit can be simplified as
Yi+1M+1— v N, . These are the,; terms found in the classi-
cal rate equationi3), except that here the subscrlpis used
for labeling purpose.

We therefore conclude that the set of stochastic
master equationg7) are reducible to the set of classical
rate equations given in Eg) and(5) when the mean popu-
lations are large. Furthermore, it is possible to justify
the stochastic expression for the nucleation rate, given in
Eq. (14).
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