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Kinetics of heterogeneous nucleation for low mean cluster populations
Jayesh S. Bhatta) and Ian J. Fordb)

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom

~Received 21 October 2002; accepted 22 November 2002!

The process of nucleation is normally described using rate equations for the mean populations of
molecular clusters. This approach can be justified for cases where these mean populations are large.
However, it may be unsuitable in the case of heterogeneous nucleation on small particles if the mean
populations are of the order of unity or less. In such a case, considering the average populations
might be erroneous since the statistical fluctuations in the molecular populations should be taken
into account. Here a stochastic treatment of heterogeneous nucleation kinetics is presented that is
described by a set of master equations, and a modified expression for the nucleation rate has been
deduced. Furthermore, a numerical method for solving the stochastic system has been examined,
and the results show that the rate of nucleation can differ greatly from that obtained with the
traditional kinetics. ©2003 American Institute of Physics.@DOI: 10.1063/1.1538605#
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I. INTRODUCTION

Transformations of the phase of substances are v
common; dramatic examples can be found in the atmosph
where the condensation of water vapor, driven below its d
point, gives rise to the formation of water and ice clouds
great variety and beauty.1 Similar processes on a grand
scale are believed to take place in the vicinity of stars, giv
rise to equally beautiful dusty nebulae. Domestic examp
are also familiar, and processes such as melting, freez
boiling or condensation are common in industry. Howev
the rate at which these processes occur is not easy to pre

Most of these phase transformations are first ord
which is to say that a latent heat is transferred during
process, and a surface tension exists between the two ph
at equilibrium. The transformation usually involves th
emergence of assemblages, or clusters, of molecules
characteristics~density, symmetry, etc! of the new phase
However, these clusters are not necessarily all thermo
namically more stable than the original phase. Small clust
with high proportions of ‘‘surface,’’ tend to be unstable. F
moderate degrees of metastability of the original phase, th
exists a ‘‘bottleneck’’ in the process, corresponding to t
need to form a so-called critical molecular cluster. Once o
has been formed, further growth is thermodynamically fav
able. This is the process of nucleation, driven fundament
by thermal fluctuations. However, for greater degrees
metastability of the original phase, the phase transforma
can become deterministic, with no thermodynamic bot
neck. The process then becomes spinodal decompositio2

Most research into nucleation is concerned with the
mogeneous process, where the metastability of the orig
phase is overcome without the presence of special nuclea
sites in the system. The critical clusters form in the abse
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of foreign bodies and container surfaces. However this is
the process responsible for most of the familiar phase tra
formations described earlier. The atmosphere is not enti
free of suspended matter, and cloud formation, for exam
takes place by a process of so-called heterogeneous n
ation. The water clusters, and ultimately the cloud drople
form on the surfaces of suspended particles called cl
condensation nuclei~CCN!, since it is far easier thermo
dynamically to do this than to form a critical cluster hom
geneously.3–6 Heterogeneous nucleation has been previou
investigated via free energy calculation approach.7,8

Cloud condensation nuclei are solid or liquid aeroso
often only a fraction of a micrometer in diameter. Now, t
metastability of a vapor is measured in terms of its sup
saturationS, defined as the ratio of the vapor pressure to
saturated vapor pressure, and the critical supersaturatio
quired to drive nucleation at a given rate is a measure of
ease with which critical clusters can be formed. While
value ofS of order 10 might be necessary in some circu
stances to drive homogeneous nucleation, onlyS;0.01 is
sufficient to drive the heterogeneous process if CCN surfa
are present.9 In the atmosphere, supersaturations are usu
limited to these values, so heterogeneous nucleation is
dominant process.

It is generally considered that the kinetics of nucleati
were correctly described by Becker and Do¨ring10 almost 70
years ago. This solution applies to the formation of clust
of a single molecular species, by a process of single m
ecule attachment and loss. Usually, the slightly unreali
steady state situation is assumed, where the supersatur
of the original phase is held constant in spite of the consum
tion of material in the formation of new phase. Neverthele
this is a reasonable approximation when the rate of consu
tion is low, and so the processes of homogeneous and
erogeneous nucleation are considered to be well represe
by the formula for the nucleation rate,

il:
6 © 2003 American Institute of Physics
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J5
b1n1

11( i 52
i max) j 52

i ~g j /b j !
, ~1!

whereb i is the rate at which monomers attach to cluster
size i, g i is the rate at which they detach from the sam
cluster, andi max is the maximum cluster size allowed in th
system. The growth ratesb i are proportional to the monome
populationn1 , since they represent monomeric attachme

The Becker–Do¨ring expression, Eq.~1!, is obtained by
solving a basic set of rate equations describing the differe
betweenb ini , the number of growth events from sizei to
( i 11), andg i 11 , the number of decays from size (i 11) to
i,

J5b ini2g i 11ni 11 , ~2!

whereni is the steady state population of clusters of sizei.
These equations are held to apply fori from unity up to
i max21. The Becker–Do¨ring solution applies when the
growth ladder is terminated by the assumption that cluster
size i max11 do not decay, henceJ5b i max

ni max
. For many

realistic situations, the solution is insensitive to the choice
i max, as long as it is large enough.

However, the Becker–Do¨ring approach makes an a
sumption about the kinetics which may not be valid. The r
equations are what we might callclassicalin that the number
of growth transitions from sizei to (i 11), for example, is
taken to be the population ofi-clustersni multiplied by a rate
coefficientb i proportional ton1 . If n1 were a precise con
stant, then this assumption would be valid, but in fact
cluster populations in the problem, includingn1 , display
fluctuations about a mean value, since the processe
growth and decay occur as stochastic events. As we s
show in the next section, the growth rate actually requires
to evaluate the mean of the product of the populations
monomers andi-clusters, rather than the product of th
mean.

The error involved by the neglect of fluctuations is sm
when the populations of clusters are large, by the usual
tistical arguments. This is almost always the case in pract
cases of homogeneous nucleation: the system is a samp
vapor, say, in a macroscopic container, so that the numbe
monomers present in the system is huge. However, when
process under consideration is heterogeneous nucleation
ing place on the surface of a microscopic particle, the po
bility arises that populations could be small. An experime
involving vapor condensation could be conducted in a m
roscopic container, but the actual ‘‘reaction vessel’’ would
the surface of one of the many particles suspended inside
container. In experiments involving heterogeneous nu
ation, therefore, it is possible for the Becker–Do¨ring kinetics
to be inappropriate.

It is this possibility that we investigate in this stud
There have been some attempts at considering the dis
nature of the nucleating molecules with the aid of stocha
arguments. In particular, Ebelinget al. have examined a mas
ter equation approach in dealing with the nucleat
kinetics.11 To a limited extent, it is similar to what we pro
pose in the next section of this paper, but the theory of Eb
ing et al. gives only a general picture of the kinetics, and
Downloaded 03 Feb 2003 to 128.40.8.26. Redistribution subject to AIP
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not intended for treating small systems with tiny mean po
lations of molecules. The possibility of low mean popul
tions encountered in precipitation in small droplets has b
considered by Manjunathet al., through stochastic simula
tions involving a series of the so-called product dens
equations.12 Dimer formation taking place on the surface
tiny dust particles in low density conditions of interstell
medium and thin atmospheres has also been previo
studied.13

In this paper, we consider the complete solution to
heterogeneous nucleation kinetics of growth and decay
clusters of various sizes, where the possibility of fluctuatio
is properly taken into account. This requires us to set up
solve master equations for the probability distributions
cluster populations. We consider a simple set of rate coe
cients which allow us to perform the computational tasks
an efficient manner, and contrast the resulting nucleation
with the Becker–Do¨ring solution. We expose the condition
necessary for large differences to exist between the ‘‘cla
cal’’ Becker–Döring solution and the more appropriate ‘‘sto
chastic’’ solution to the master equations.

II. KINETICS OF HETEROGENEOUS NUCLEATION

A. Classical rate equations

Consider a host particle surrounded by gas phase m
ecules~monomers! that occasionally strike and stick to th
particle. Once adsorbed, such a monomer may move aro
the particle. It may encounter another monomer and the
may form a dimer. The growth of the adsorbed molecu
cluster may progress further due to attachments of m
monomers. The cluster may also decay by loss of monom
induced, perhaps, by energy input from the substrate. C
ters need to reach a critical sizei * before they will, on av-
erage, be able to grow further. In other words, for clust
consisting ofi molecules, withi , i * , the probability per unit
time for a cluster to grow, divided by the probability for it t
lose a molecule~decay! is less than unity. For sizes great
than the critical size, the ratio of growth to decay probab
ties is greater than unity. Most clusters tend to languish in
subcritical size region, and only occasionally do they ma
age, by a lucky sequence of growth steps, to reach the cri
size, and thereafter grow.

Traditionally, such a system is modeled using the r
equations,

dni

dt
5b i 21ni 212g ini2b ini1g i 11ni 11 ~3!

for i>2, whereni is the mean population of clusters of siz
i in the system.b i is the rate at which molecules attac
themselves to clusters of sizei, andg i is the rate at which
molecules are lost from clusters of sizei. The growth ratesb i

are proportional to the number of monomersn1 in the sys-
tem, so that we can write

b i5b i8n1 . ~4!

For i 51 the dynamics are expressed by
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dn1

dt
5 j 2ln122b1n112g2n22~b2n22g3n3!

2~b3n32g4n4!2•••2b i max
ni max

5 j 2ln122~b1n12g2n2!

2 (
i 52

i max21

~b ini2g i 11ni 11!2b i max
ni max

, ~5!

wherej is the source rate of monomers attaching themse
to the surface from the surrounding medium andl is the
evaporation rate of monomers from the particle surface.

When fluctuations in populations about mean values
taken into account, it would seem reasonable that the
equations~3! should be replaced by something like

d^Ni&
dt

5b i 218 ^N1Ni 21&2g i^Ni&2b i8^N1Ni&

1g i 11^Ni 11&, ~6!
s
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h
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where the angled brackets represent an averaging ove
fluctuations and the cluster populations are written in up
caseNi to remind us that they are fluctuating stochastic va
ables. Equation~5! would similarly be replaced. We shall se
in the next section how such equations can be derived fro
stochastic treatment of the populations, and how the avera
can be evaluated.

B. Stochastic approach

In the stochastic approach we consider a probability d
tribution that describes the state of the system in terms of
exact populations of all the allowed cluster sizes. Let
probability that the system containsN1 monomers,N2

dimers, and in generalNi i-clusters at time t be
W(N1 ,N2 , . . . ,Ni , . . . ,Ni max

; t)[W($Ni%;t). In order to
limit the number of elements in this array, we introduce
maximum cluster sizei max. We also limit eachNi to be less
than or equal toNi

max. The rate of change of this probabilit
is then given by
dW

dt
5 jW~N121, . . . !2 jW~••• !1l~N111!W~N111, . . . !2lN1W~••• !1b18~N112!~N111!W~N112,N221, . . . !

2b18N1~N121!W~••• !1 (
i 52

i max21

b i8~N111!~Ni11!W~N111, . . . ,Ni11,Ni 1121, . . . !

1b i max
8 ~N111!~Ni max

11!W~N111, . . . ,Ni max
11!2(

i 52

i max

b i8N1NiW~••• !

1g2~N211!W~N122,N211, . . . !1(
i 53

i max

g i~Ni11!W~N121, . . . ,Ni 2121,Ni11, . . . !2(
i 52

i max

g iNiW~••• !. ~7!
is,
o.
as

f

e

C,
On the right hand side of the above equation,t has been
omitted for simplicity. The dots represent values of theNj

that are the same as on the left hand side.
The processes considered are the growth transition

1( i 21)→ i and 11 i→( i 11) due to monomer attachmen
as well as the decay processesi→( i 21)11 and (i 11)
→ i 11 due to monomer detachment from the cluster. T
attachment and detachment of dimers, trimers, and hig
size clusters are neglected. The first two terms~the j terms!
describe the addition of a monomer from the surroundin
leading to a monomer population changeN1→N111. The
third and fourth terms represent loss of a monomer from
particle surface due to the population jumpN1→N121. The
rest of the terms are constructed using similar arguments
monomeric attachment and detachment to and from dim
trimers and in generali-clusters. There is a term forb i max

,

but no term involvingg i max11 since clusters at sizei max may

grow, but the population at this size receives no additio
from the decay of the next larger cluster. This acts as
boundary condition of the problem.

The classical limit corresponds to the probability dist
butionW being unity for only one set of possible populatio
1

e
er

s,

e

or
rs,

s
e

of the i-clusters, that is the mean populations. That
W(n1 ,n2 , . . . ,ni . . . )51 and all other elements are zer
Formally, this is represented, using the Kronecker delta,

W~N1 ,N2 , . . . !5)
i 51

i max

dNini
. ~8!

In the steady state and this classical limit, solving Eq.~7!
would be equivalent to solving Eqs.~3!, ~5!, and ~1!, as
shown in the Appendix.

If Eq. ~7! can be solved by some means, knowledge oW
would allows us to generate probability distributionsPi(Ni)
for the population ofi-clusters,

Pi~Ni !5 (
( j Þ i )

(
Nj 50

Nj
max

W~N1 , . . . ,Nj , . . . ,Ni , . . . !. ~9!

ThePi are likely to look like Gaussian distributions for larg
ni , or Poisson distributions for smallni . Ideally, the values
of all theNj

max ought to be infinity for a ‘‘perfect’’ evaluation
of Pi(Ni). However in practice, as we shall see in Sec. III
satisfactory results may be obtained when theNj

max are lim-
ited to reasonably small values.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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It is also possible to calculate joint probabilities, such
Pli (Nl ,Ni), which is the probability that we findNl

l-clusters andNi i-clusters in the system. These distributio
are given by

Pli ~Nl ,Ni !

5 (
j Þ l ,i

(
Nj 50

Nj
max

W~N1 , . . . ,Nj , . . . ,Nl , . . . ,Ni , . . . !.

~10!

If the steady stateW are known, it is possible to calculat
the nucleation rate. This is done by summing all the pr
abilities of growth from any sizei to sizei 11 and subtract
those for decay in the opposite direction,

J5(
$Nj %

~b i8N1NiW~$Nj%!2g i 11Ni 11W~$Nj%!!, ~11!

which by introducing the notation

^Ni&5(
Ni

Ni Pi~Ni ! ~12!

and

^NlNi&5 (
Nl ,Ni

NlNi Pli ~Nl ,Ni !, ~13!

allows us to write

J5H b i8^N1Ni&2g i 11^Ni 11& if i>2

b i8^N1~Ni21!&2g i 11^Ni 11& if i 51.
~14!

Any value ofi>2 in the first of the above expressions wou
give the same result in the steady state as the nuclea
current should be independent of cluster size. If one usi
51 to compute the nucleation rate, a slight modification
required as in the second expression in Eq.~14!, since having
just a single monomer in the system cannot give rise t
nucleation current towards the critical size. In contrast,
nucleation rate given in Eq.~2! according to the standard ra
Eq. ~3!, in the same notation, reads

Jclas5b i8^N1&^Ni&2g i 11^Ni 11&. ~15!

One would expect relative fluctuations in the populations
become negligible when the populations are large, so th
mean of a product becomes the product of the means.
therefore evident from the comparison of Eqs.~14! and~15!
that the standard rate equations are valid in the large po
lation limit. It is also possible to visualize how the standa
result for the nucleation rate must be modified for small s
tems. By writing

b i8^N1Ni&5~11e i !b i8^N1&^Ni&, ~16!

the expression for the rate given in Eq.~1! can be used to se
that, to a good approximation,

Jsmall5Jlarge)
i 51

i*

~11e i !, ~17!
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where i * is the critical size, where the rate coefficients f
growth and decay are equal (b i5g i). We are interested in
calculating the modification factor.

III. CALCULATIONS

A. Parametrization

The master equations~7! are driven by the input param
etersj, l, b i8 , andg i . In order to investigate the problem o
heterogeneous nucleation in small systems, we must c
fully choose the input parameters that are likely to lead
small cluster populations.

Let us introduce a size parameterj, which may be taken
to be proportional to the surface area of the host particle.
coefficientsl and g i are the decay rates of monomersi
51) and i-mers (i>2), respectively, and hence may b
taken as independent of the system size. The attachmen
j of monomers onto the particle surface, however, sho
increase linearly withj. It is useful to consider temporarily
the dynamics in the absence of any dimer production,
which case the mean monomer population would be given
a balance betweenj andl, namely,^N1&. j /l. If j 0 is the
value of j at j51 then we can write

j 5j j 0 , ~18!

so that

^N1&.
j 0

l
j. ~19!

For convenience, let us postulate thatj51 is the system
with a nominal mean monomer population of unity. Th
imposes the conditionj 05l.

For simplicity, we assume the growth rateb i8 to be in-
dependent of the cluster sizei, i.e.,b185b285•••5b i max

8 . On

the other hand,b i8 will be inversely proportional toj since it
measures the likelihood that an adsorbed monomer will
counter an adsorbedi-mer. As the system gets bigger, th
likelihood would diminish. Furthermore, we may fixb i8 such
that atj51 the mean growth rate of ani-mer is unity. Re-
membering from Eq.~4! that b i5b i8^N1&, this means that
b i851 at j51, and in general

b i85
1

j
. ~20!

The choice of the parametersg i must satisfy the require
ment that at the critical sizei * , a cluster is as likely to decay
as it is likely to grow, i.e.,g i* 5b i*

8 ^N1&. With the above
stated choice ofb i8 and ^N1&, this means thatg i* 51 at j
51. Indeed, this should be true for any value ofj as the
decay rates are independent of the system size.
i-dependence ofg i may be chosen on the grounds that sm
clusters are more likely to decay than large clusters.
therefore choose

g i5S i *

i D p

, ~21!

wherep is some constant to be decided. Entirely for comp
tational convenience, and without suggesting that the mo
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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should represent a real system, we shall choosep52 and
i * 52. This form ofg i ensures that a cluster below the cri
cal size (i , i * ) has a high probability of decay, wherea
those above the critical size (i . i * ) will find it easier to
grow.

The relative values ofj 0 ~and l) and b i8 control the
degree to which the mean monomer population is close
the estimate~19!. We shall explore cases wherej 0@1 and
j 051 in Sec. III C.

B. Classical solution

The most convenient way of deducing the classi
nucleation rate for a given set of parametersj 0 , l, j, b i ,
andg i is through the expression~1!. However then1 appear-
ing in that equation still needs to be known. Although in t
large j 0 limit expression~19! for ^N1& may provide a reason
able estimate, this is not guaranteed to be true in genera
better method of findingn1 is as follows.

Equation~5! in the steady state may be written, with th
help of Eq.~2!, as

05 j 0j2ln122J2~ i max22!J2J

5 j 0j2ln12~ i max11!J, ~22!

whereJ is given by Eq.~1!. Let us assign a function

F~n1!5 j 0j2ln12~ i max11!J. ~23!

This function falls with increasingn1 . As an initial approxi-
mation, we providen15 j 0j/l, which in all practical cases is
at least a slight overestimation of the actual value ofn1 . We
then iteratively search for a zero of the functionF(n1) by
subtracting a very small amount~typically ;1026) from the
trial value ofn1 and evaluating a new value ofF(n1). This
process is continued until a solution is found within a ve
small tolerance. The final value ofn1 that corresponds to
F(n1)50 can then be utilized in Eq.~1! to find the classical
value of the nucleation rate.

C. Solving the master equation

Given all the necessary parameters given in Sec. III
we are in a position to solve the master equations~7! which
should ultimately render the stochastic solution to the s
tem. Solving Eq.~7! analytically does not appear to be
feasible task. We therefore look for an appropriate numer
technique to act as a substitute.

Computationally, we discretize timet, and replace thedt
by a very small but finiteDt in Eq. ~7!. ThedW(t) may then
be replaced byW(t1Dt)2W(t), thus allowing Eq.~7! to be
solved iteratively. As an initial condition, we se
W(0,0,0, . . . ,0;t50)51 with all the remaining elements o
the arrayW($Ni%) set to zero, specifying an empty system
start with. The system thereafter evolves in time unti
steady state is reached.

Equations ~7! represent a set of coupled differenti
equations.i max is the largest size of cluster that can form
the particle, and needs to be specified explicitly at the be
ning. In principle, it should be large enough so that the c
tribution due to terms withi max11 in the series appearing i
Eq. ~1! is negligible.
Downloaded 03 Feb 2003 to 128.40.8.26. Redistribution subject to AIP
to

l

A

,

-

al

n-
-

Strictly speaking, the multidimensional arrayW($Ni%)
consists of an infinite number of elements, but for compu
tional purpose we may set an upper limit on the maxim
number ofi-clusters the system can possess at any time
other words the array W($Ni%) takes the form
W(0:N1

max,0:N2
max, . . . ,0:Ni max

max). These values

N1
max,N2

max, . . . ,Ni max

max should be decided by educated gue

such that all of thei max probability distributions in Eq.~9!
die down to negligible levels atNi5Ni

max at the end of the
iterations.

Steady state is considered to have been reached whe
the elements ofW($Ni%) have converged within a very sma
tolerance. The nucleation ratesJ with different values ofi in
Eq. ~14! will normally evolve differently with time, but
eventually they will all converge upon a common value. Th
convergence ofJ with different values ofi in fact serves as a
‘‘double check’’ for ensuring that a steady state has inde
been achieved.

In Fig. 1 we plot the classical as well as the stochas
nucleation rates obtained under different values ofi max, with
fixed values ofi * 52, j 05l51, andj51. As can be seen
the nucleation rateJ is not very sensitive toi max. The sto-

FIG. 2. A typical example of probability distributionsPi(Ni). Only values
plotted at integerN are physical; the curves have been fitted as a guide to
eye. In this example,N1

max516, N2
max512, etc. were sufficient to give sat

isfactorily smooth probability distributions for the mean populations.

FIG. 1. Nucleation rate as a function ofi max with i * 52, j 05l51, andj
51. It is reasonably safe to choosei max54, since the results obtained with
higher i max56, for instance, are approximately the same.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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chasticJ decreases slightly with increasingi max, but the es-
sential message is that a value ofi max54 may be trusted in
order to demonstrate at least the qualitative behavior of
system.

An example of the probability distributionsPi(Ni), as
defined in Eq.~9! and calculated once the steady state
been reached, is shown in Fig. 2.P1(N1) is the probability
distribution for the monomer population,P2(N2) is the same
for dimmers, and so on.

Figure 3 shows the stochastic and classical nuclea
rates as a function of the particle size parameterj for j 0

5l5100. The calculation has been performed withi * 52
and i max54. Figure 4 shows the mean monomer populat
for the same system as predicted by the two models. The
a good agreement between the two models for the mono
population in this limit ofj 0@1. The nucleation rates in Fig
3 according to the two models, however, start diverging aj
falls below 0.1. It is interesting to note that the monom
population betweenj50.1 andj51 is below unity and yet

FIG. 3. Nucleation rate as a function of the size parameterj for the j 0

5l5100 model. The prediction of rate equation approach is shown w
cross signs, and the squares are the results of the stochastic model pre
here.

FIG. 4. Stochastic and classical mean monomer population,^N1&, as a
function ofj for the j 05l5100 model. Both models predict essentially th
same mean populations for this choice of parameters.
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the stochastic nucleation rate does not differ considera
from its classical counterpart in this range, and for the
parameters.

In Fig. 5 the nucleation rate is plotted again as a funct
of j, but this time withj 05l51, the rest of the parameter
being the same as in Fig. 3. The mean monomer popula
for the same system is plotted in Fig. 6, and now we see
the stochastiĉ N1& does differ from classical̂N1& oncej
goes below unity. Approximately below the sizej51, where
the mean monomer population is below unity, visible diffe
ence between the classical and stochastic nucleation rat
again evident in Fig. 5. The linear dependence ofJ with
respect toj exhibited in the classical theory is lost when o
deals with very small particle sizes. Note that the stocha
model gives a smaller nucleation rate, but a higher m
population of monomers than the classical prediction, sinc
higher nucleation rate would leave fewer monomers on
surface.

The ratiosJclassical/Jstochasticderived from both cases,j 0

5l5100 andj 05l51, have been plotted in Fig. 7. This i

h
nted

FIG. 5. Nucleation rate as a function ofj for the j 05l51 model. Differ-
ence between the stochastic and classical models emerges belowj51.

FIG. 6. Stochastic and classical mean monomer population,^N1&, as a
function of j for the j 05l51 case. Unlike thej 05l5100 case, some
difference can be seen here between the mean populations according
two models.
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simply the factor by which the classical Becker–Do¨ring ki-
netics overestimates the nucleation rate as compared with
stochastic model presented here. The overestimation gr
as we look at ever smaller sizes (j) of the host particle. Also,
the ratio is larger for thej 05l51 calculations, compared
with the j 05l5100 case. This is due partly to the fact th
a large value ofj 0 produces a mean monomer populati
closer to the classical prediction as discussed in Sec. III

The classical treatment requires there to be a large po
lation of the nucleating species so as to be able to use a m
value of the populations in treating the kinetics. Howev
when the mean monomer population is below unity, there
instances when there are no monomers present on the su
and only by a lucky chance are there more than one mo
mers present. Since the classical kinetics ignores this disc
nature of the molecular species, it assumes a higher rea
rate between the molecules, hence yielding an overestim
nucleation rate.

IV. CONCLUSIONS

We have studied the problem of heterogeneous nu
ation under conditions where the mean populations of
nucleating clusters may be of the order of unity. The tra
tional rate equation approach, which treats the kinetics
terms of the mean cluster populations, is likely to fail in su
a limit. To investigate this, we have proposed a new ma
equation approach that takes into account the stochastic
tuations in cluster populations, and replaces the classical
equations.

A method for solving the master equation numerica
has been explored. The results of the model calculations
formed here indicate a large difference in the nucleation ra
as predicted by the stochastic and classical treatments a
nucleation site becomes very small. However, if the sys
is large, the stochastic treatment reproduces the clas
Becker–Do¨ring kinetics.

For simplicity, only monomer attachment and detac
ment to the nucleating cluster has been allowed in the
chastic model here. The master equation can neverthele

FIG. 7. The ratio of classical vs stochastic nucleation rate calculated
function of j for the j 05l5100 andj 05l51 models.
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extended easily to include the loss and gain of dimers, tr
ers, etc., solving which would clearly require a much grea
deal of computational power.
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APPENDIX: REDUCTION OF MASTER EQUATIONS
TO RATE EQUATIONS

It is possible to show that the master equations~7! do
indeed reduce to the rate equations~3! and~5! in the classical
limit of relatively large populations. To do this, let us defin
an operatorÔ such that

Ô• f 5 (
$Ni %50

`

Nl• f , ~A1!

i.e., we multiply the given termf by Nl ~where l
51, . . . ,i max) and sum the result over all the$Ni%. Let us
perform this operation on both sides of Eq.~7!. This makes
the left-hand side read as

(
$Ni %50

`

Nl

dW~$Ni%!

dt
5

d^Nl&
dt

, ~A2!

which is equivalent to the left-hand side of Eqs.~3! and~5!.
Now consider the consequence of this operation on the ri
hand side of Eq.~7!. On the right-hand side, one needs
treat separately the cases ofl 51 and l .1 since there are
different rate equations for the two cases ofN1 and Nl ( l
.1) in the classical picture. Let us consider terms prop
tional to the parametersj, l, b i8 , andg i one by one and try
to compare them with those found in the rate equations~3!
and ~5!.

1. The j terms

a. lÄ1

Operating the first term in Eq.~7! by Ô along with l
51 will render

(
$Ni %50

`

jN1 W~N121, . . . !.

In order to bring the probabilityW in the same form as on th
left-hand side, that is,W(N1 ,N2 , . . . ,Ni max

), we can make
the substitutionN1→N111, which is what happens to th
monomer population due to thej term. The above notation
will then turn into

(
$Ni %50

`

j ~N111!W~N1 , . . . !5 j ^N111&. ~A3!

The sum over this newN1 label should run from21 to `,
but clearly the unphysical first term in the series vanishes
that the lower limit is indeed zero.

Operating upon the second term in Eq.~7! with Ô will
give

2 (
$Ni %50

`

jN1 W~••• ! 5 2 j ^N1&. ~A4!

a

 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



-

ti

r

g

si
e

r

to

3173J. Chem. Phys., Vol. 118, No. 7, 15 February 2003 Kinetics of heterogeneous nucleation
In the classical limit, the upper caseN1 together with
angled brackets is replaced byn1 , so from Eqs.~A3! and
~A4!, the net result of applyingÔ on both thej terms in Eq.
~7! is

jn11 j 2 jn15 j . ~A5!

This is precisely what we have as the ‘‘j term’’ in the rate
equation~5!, which was written down explicitly for the mo
nomeric (l 51) population.

b. lÌ1

If l is not equal to 1, then the operation due toÔ will
make the first term in Eq.~7! read

(
$Ni %50

`

jNl W~N121, . . . !,

wherelÞ1. This time the substitutionN1→N111 will lead
to

(
$Ni %50

`

jNl W~N1 , . . . !5 j ^Nl&. ~A6!

The second term of the master equation under the opera
of Ô will be similar to expression~A4!,

2 (
$Ni %50

`

jNl W~ . . . ! 5 2 j ^Nl&. ~A7!

Hence the sum of Eqs.~A6! and ~A7! will be zero, and
indeed, there is noj term in the rate equations~3!.

2. The l terms

a. lÄ1

If we apply the operatorÔ to the third term of the maste
equation~7!, we have

(
$Ni %50

`

lN1~N111! W~N111, . . . !.

This time we make the substitutionN1→N121 so that the
above expression is converted into

(
$Ni %50

`

l~N121!N1 W~N1 , . . . !5l^~N121!N1&.

~A8!

The lower limit for the sum over the shifted variableN1

should be11, but we can extend this to zero without chan
ing the result of the summation.

Performing the operationÔ on the fourth term of the
master equation will give us

2 (
$Ni %50

`

lN1N1 W~••• !52l^N1
2&. ~A9!

Once again, to see the correspondence with the clas
model, we replace the angled brackets and the upper casN1

with the lower casen1 , so we are left with the net result

l~n1
22n1!2ln1

252ln1 . ~A10!

This is thel term found in the monomeric rate equation~5!.
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b. lÌ1

The third term of Eq.~7! under the influence ofÔ will
this time become

(
$Ni %50

`

lNl~N111! W~N111, . . . !,

and the substitutionN1→N121 will make it

(
$Ni %50

`

lNlN1 W~N1 , . . . !5l^NlN1&. ~A11!

The operation due toÔ on the fourth term of Eq.~7! will
give us2l^NlN1&. Hence the lambda term will vanish fo
the l .1 case, and is absent in the rate equation~3! also.

3. The b i8 terms
a. lÄ1

If we operate on the fifth term in the master equation~7!

with Ô, using l 51, we get

(
$Ni %50

`

b18N1~N112!~N111! W~N112,N221, . . . !,

which with substitutionsN1→N122 and N2→N211 be-
comes

(
$Ni %50

`

b18~N122!~N121!N1 W~N1 , . . . !

5b1^~N122!~N121!&, ~A12!

where we have used the fact thatb i5b i8N1 . The sixth term
can be operated on without having to do any relabeling ofN,

2 (
$Ni %50

`

b18N1N1~N121! W~••• !52b1^N1~N121!&.

~A13!

The seventh term will however require relabeling in order
bring theW in the desired form. We first operate on it withÔ
to get

(
$Ni %50

`

(
i 52

i max21

b i8N1~N111!~Ni11!

3W~N111, . . . ,Ni11,Ni 1121, . . . !,

and then use the substitutionsN1→N121, Ni→Ni21 and
Ni 11→Ni 1111 in order to obtain

(
$Ni %50

`

(
i 52

i max21

b i8~N121!N1Ni

3W~N1 , . . . ,Ni ,Ni 11 , . . . !5 (
i 52

i max21

b i^~N121!Ni&.

~A14!

With some thought, it is possible to realize that result~A14!
will hold true for any value ofi in the ( i 52

i max21 series. A
similar procedure on the eighth term of Eq.~7! will give us

b i max̂
~N121!Ni max

&, ~A15!

which essentially completes the series in Eq.~A14! from i

52 to i max. Finally, we operate on the ninth term withÔ and
obtain
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2 (
$Ni %50

`

(
i 52

i max

b i8N1N1Ni W~••• !52(
i 52

i max

b i^N1Ni&,

~A16!

which again holds no matter what value ofi is chosen in the
( i 52

i max series.
Hence the sum of all theb i8 terms in Eqs.~A12!, ~A13!,

~A14!, ~A15!, and~A16! will be

(
i 52

i max

b i^~N121!Ni&2(
i 52

i max

b i^N1Ni&

1b1@^~N122!~N121!&2^~N121!N1&#. ~A17!

If we now replace the upper caseN with its lower case coun-
terpart, discarding the angled brackets to reflect the class
limit, expression~A17! is easily reduced to

2(
i 52

i max

b ini22b1~n121!. ~A18!

It can be seen that these are theb terms in the rate equatio
~5! provided thatn121'n1 in the above expression. This
a fair approximation in the classical limit where the mon
meric population is high.

b. lÌ1

Additional care is required when one deals with the c
of lÞ1 in the b i8 terms. This is due to the series( i 52

i max

involved and unlike thel 51 case, contributions due to dif
ferent values ofi need to be examined explicitly.

Consider the fifth term in Eq.~7! first. With the operator
Ô applied, it will read

(
$Ni %50

`

b18Nl~N112!~N111! W~N112,N221, . . . !,

and the substitutionsN1→N122 andN2→N211 will make
it
be

Downloaded 03 Feb 2003 to 128.40.8.26. Redistribution subject to AIP
al

-

e

(
$Ni %50

`

b18NlN1~N121! W~ . . . !

5b1^~N121!Nl& if l>3 ~A19!

and

(
$Ni %50

`

b18N1~N121!~N211! W~••• !

5b1^~N121!~N211!& if l 52. ~A20!

The sixth term in Eq.~7! will not require any relabeling ofN
after being operated on byÔ and regardless of the value ofl
it will become

2 (
$Ni %50

`

b18NlN1~N121! W~••• !52b1^~N121!Nl&.

~A21!

Hence forl>3 the sum of the positive and negativeb1

terms, given in expressions~A19! and ~A21!, is zero. The
rate equation~3! written down for i>3 will surely have no
b1 terms. For the special case ofl 52, the sum of expres-
sions~A20! and~A21! will leave b1(n121) in the classical
language. Considering the rate equation~3! for i 52 case,
one would find the termb1n1 , which is approximately equa
to the stochastic resultb1(n121), provided thatn1@1. This
is a valid assumption in the classical limit, and so theb18
terms in the stochastic master equation are reducible to th
in the classical rate equations when the mean populations
large.

Let us now consider the seventh term in Eq.~7!. With
operatorÔ acting on it, it would read

(
$Ni %50

`

(
i 52

i max21

b i8Nl~N111!~Ni11!

3W~N111, . . . ,Ni11,Ni 1121, . . . !.

Consider the expansion of the second summation here,
(
$Ni %50

`

b28Nl~N111!~N211! W~N111,N211,N321, . . . !

1 (
$Ni %50

`

b38Nl~N111!~N311! W~N111, . . . ,N311,N421, . . . !

1 (
$Ni %50

`

b48Nl~N111!~N411! W~N111, . . . ,N411,N521, . . . ! 1 •••.
With appropriate relabeling as done before, and remem
ing thatb i5b i8N1 , it is possible to show that the this term
reduces to

b l 21^Nl 21~Nl11!&1b l^Nl~Nl21!&1 (
i 52

iÞ l 21,l

i max

b i^NiNl&.

~A22!
r-The operatorÔ will reduce the eighth term of Eq.~7! into

(
$Ni %50

`

b i max
8 Nl~N111!~Ni max

11! W~N111, . . . ,Ni max
11!,

and with the relabelingN1→N121 and Ni max
→Ni max

21
will give us
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(
$Ni %50

`

b i max
8 NlN1Ni max

W~••• !

5b i max̂
Ni max

Nl& if l 52, . . . ,i max21,

~A23!

(
$Ni %50

`

b i max
8 ~Ni max

21!N1Ni max
W~••• !

5b i max̂
Ni max

~Ni max
21!& if l 5 i max.

A similar argument applies to the ninth term of Eq.~7!.
The operatorÔ will reduce this term to

2 (
$Ni %50

`

(
i 52

i max

b i8NlN1Ni W~••• !52(
i 52

i max

b i^NiNl&

~A24!

regardless of the value ofl . Hence summing the sevent
eighth and ninth terms of the master equation, given her
expressions~A22!, ~A23!, and ~A24!, and replacing the up
per caseN with the lower casen in the classical picture will
give us b l 21nl 212b lnl , where l 52, . . . ,i max. These are
the b i terms in the classical rate equation~3!.

4. The g i terms

a. lÄ1

The effect of the operatorÔ, with l 51, on the tenth
term in the master equation~7! will be

(
$Ni %50

`

g2N1~N211!W~N122,N211, . . . !,

and the relabelingN1→N112 andN2→N221 will give us

(
$Ni %50

`

g2~N112!N2 W~••• !5g2^~N112!N2&. ~A25!

The eleventh term of Eq.~7!, under the operation due t
Ô will become

(
$Ni %50

`

(
i 53

i max

g i N1~Ni11!

3W~N121, . . . ,Ni 2121,Ni11, . . . !,

which with the relabelingN1→N111, Ni 21→Ni 2111, Ni

→Ni21 becomes

(
$Ni %50

`

(
i 53

i max

g i~N111!Ni W~••• ! 5 (
i 53

i max

g i^~N111!Ni&.

~A26!

The last term in Equation~7! is more straight forward
and does not require any relabeling, so the operatorÔ will
make it

2 (
$Ni %50

`

(
i 52

i max

g i N1Ni W~ . . . ! 5 2(
i 52

i max

g i^N1Ni&.

~A27!

Replacing the angled brackets and the upper caseN with the
lower casen in the classical limit, the sum of all theg i terms
expressed in~A25!, ~A26!, and~A27! will be
Downloaded 03 Feb 2003 to 128.40.8.26. Redistribution subject to AIP
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2 g2n21(
i 53

i max

g i ni 5 2g2n21 (
i 52

i max21

g i 11ni 11 . ~A28!

These are precisely theg i terms appearing in the monomer
rate equation~5!.

b. lÌ1

If we operate on the tenth term of Eq.~7! with Ô, we get

(
$Ni %50

`

g2Nl~N211!W~N122,N211, . . . !,

and with the relabelingN1→N112 andN2→N221 it be-
comes

(
$Ni %50

`

g2NlN2 W~••• !5g2^NlN2&. ~A29!

If operated upon byÔ, the eleventh term of Eq.~7! will
read

(
$Ni %50

`

(
i 53

i max

g iNl~Ni11!

3W~N121, . . . ,Ni 2121,Ni11, . . . !.

With suitable substitutions, it can be shown that this expr
sion is equivalent to

g l^Nl~Nl21!&1g l 11^Nl 11~Nl11!&1 (
i 53

iÞ l ,l 11

i max

g i ^NlNi&.

~A30!

Finally, the last term in Equation~7! under the operation
due toÔ will appear as

2 (
$Ni %50

`

(
i 52

i max

g iNlNi W~••• !52(
i 52

i max

g i^NlNi&, ~A31!

wherel 52, . . . ,i max. Hence the sum of the all theg i terms
given in ~A29!, ~A30!, and~A31! will be

g l^Nl~Nl21!&1g l 11^Nl 11~Nl11!&2g l^NlNl&

2g l 11^Nl 11Nl&,

which under the classical limit can be simplified
g l 11nl 112g l nl . These are theg i terms found in the classi
cal rate equation~3!, except that here the subscriptl is used
for labeling purpose.

We therefore conclude that the set of stochas
master equations~7! are reducible to the set of classic
rate equations given in Eqs.~3! and~5! when the mean popu
lations are large. Furthermore, it is possible to just
the stochastic expression for the nucleation rate, given
Eq. ~14!.
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