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We show that evaporation from a quasistable molecular cluster may be treated as a kinetic problem
involving the stochastically driven escape of a molecule from a potential of mean force. We derive
expressions for the decay rate, and a relationship between the depth of the potential and the change
in system free energy upon loss of a molecule from the cluster. This establishes a connection
between kinetic and thermodynamic treatments of evaporation, but also reveals differences in the
prefactor in the rate expression. We perform constant energy molecular dynamics simulations of
cluster dynamics to calculate potentials of mean force, friction coefficients and effective
temperatures for use in the kinetic analysis, and to compare the results with the directly observed
escape rates. We also use the simulations to estimate the escape rates by a probabilistic analysis. It
is much more efficient to calculate the decay rate by the methods we have developed than it is to
monitor escape directly, making these approaches potentially useful for the assessment of molecular
cluster stability. ©2004 American Institute of Physics.@DOI: 10.1063/1.1644533#

I. INTRODUCTION

Vapors are not simply collections of separated molecules
or monomers: they also contain molecular clusters, growing
and evaporating by molecular gain and loss. These ephem-
eral condensed structures play a central role in the nucleation
of aerosols from metastable, or supersaturated vapors. The
bulk condensed phase is thermodynamically more stable than
the metastable vapor, but the transition can only proceed
through the growth of molecular clusters, and so their stabil-
ity is crucial. If a cluster manages to grow larger than a
certain critical size, it stands a good chance of becoming a
macroscopic droplet, but the dynamical route by which mol-
ecules cluster and form a condensed phase is rather compli-
cated. Given a configuration ofN molecules~a specification
of the positions and momenta of all the atoms! and a set of
intermolecular forces, we need to know how many large~su-
percritical! molecular agglomerates are likely to be produced
after a certain time. We need to compute this number for an
arbitrary choice of initial condition consistent with the con-
straints applied to the system, such as average density and
temperature. The need to consider all possible initial states
requires a use of statistics: an ensemble average.

The full characterization of the dynamics would require
knowledge of the complete trajectory of allN particles. This
is a huge amount of information, and the traditional simpli-
fication is to classify the system in terms of the populations
of molecular clusters contained within it as time progresses.
Rather than following the time evolution of 6N positions and
momenta, the dynamics are represented by the evolution of
the cluster populations. Often it is sufficient to monitor the
cluster populations up to a maximum cluster size of the order
of 100, and the amount of information involved is then con-
siderably less than a full dynamical description.

The dynamics of population evolution for an ensemble
of trajectories, starting from all conceivable initial states, can
be modelled using a simple set of rate equations proposed by

Becker and Do¨ring.1 The evolution ofni(t), the mean popu-
lation at timet of clusters consisting ofi molecules, is de-
scribed by

dni

dt
5b i 21ni 212g ini2b ini1g i 11ni 11 , ~1!

whereb i is the mean rate at which monomers attach to clus-
ter of sizei, andg i is the rate at which they detach from the
same cluster. The terms on the right-hand side in Eq.~1!
represent gain of i-clusters from the growth of
( i 21)-clusters, loss by the decay to (i 21)-clusters, loss by
growth to (i 11)-clusters, and gain by decay of
( i 11)-clusters. The growth ratesb i are proportional to the
monomer populationn1 . The attachment of dimers and
larger clusters is ignored. The Becker–Do¨ring equations may
be solved for a metastable vapor to give a steady state nucle-
ation rate, which is related to the proportion of all initial
molecular configurations that evolve to produce a large
growing agglomerate in a certain time interval.

Let us not forget, though, that the nucleation phenom-
enon is an example of irreversible thermodynamics, the sta-
tistical physics of systems far from equilibrium, and rigorous
methods do not exist to treat such systems mathematically,2

though near-equilibrium approximations are available. The
complicated real molecular dynamics are represented in the
Becker–Do¨ring treatment by the simple rate equations
shown above. The growth and decay processes are assumed
to proceed at rates that depend only on the gross properties
of the system~temperature, etc.! and not on the previous
history of individual clusters, or indeed of populations of
clusters. This is equivalent to saying that the transition pro-
cesses are Markovian: there is a constant probability per unit
time that a cluster will gain or lose a molecule. So it is
important to note that the Becker–Do¨ring equations are em-
pirical equations constructed to solve an idealized problem:
the validity of the approximations when applying them to
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real nucleating systems has not been established. Despite
these simplifying assumptions, the Becker–Do¨ring model
~and its various extensions! is a very useful approach. The
equations can be solved analytically, which is a great advan-
tage. It is a true kinetic treatment of nucleation, requiring
only knowledge of the mean rates of cluster growth and de-
cay.

The main alternative point of view for describing the
nucleation process is based on thermodynamics, or more par-
ticularly the theory of free energy fluctuations. One identifies
a transition state, again a molecular cluster, which is in un-
stable thermodynamic equilibrium with the metastable
vapor.3 According to the theory of free energy fluctuations,
such a state is formed with probability proportional to
exp(2DW* /kT), whereDW* is the reversible work of for-
mation of the cluster. This approach is very useful, though it
is often implemented using continuum thermodynamics
ideas,4 and applying these to small molecular agglomerates
raises a number of questions and problems. The classical
theory of nucleation may be derived in this way, by treating
the transition state as though it were a macroscopic droplet.
Microscopic calculations of cluster free energies are more
acceptable, but more laborious.

One can establish a connection between the free energy
fluctuation theory and the Becker–Do¨ring treatment if the
rate coefficients in the latter are expressed as differences in
free energy between various cluster sizes.5 Although there is
some uncertainty in the mapping, this connection can be use-
fully exploited. The decay rate in a kinetic treatment of clus-
ter population dynamics is difficult to calculate, and so it is
useful to be able to relate it to a thermodynamic quantity and
then to calculate this quantity through equilibrium statistical
mechanics.6–12

There is also scope for calculating a decay rate using the
near-equilibrium statistical mechanical techniques mentioned
above, which employ a mix of equilibrium thermodynamic
properties of clusters and the kinetics of change. This brings
a notion of time into equilibrium thermodynamics which is
otherwise absent, and which has to be added by ad-hoc ar-
guments from the kinetic theory of gases. The methods are
based on linearized nonequilibrium thermodynamics going
back to Onsager,13 and developed for this application by
Regueraet al.14 and by Schenteret al.15

Implicit in any microscopic theory of nucleation, how-
ever, is the need for a clear definition of what is meant by a
cluster. This is a subtle matter, and one which has received
considerable attention.6,7,15–26 Intuitively, a cluster should
comprise a set of molecules located close to one another. The
simplest definitions employed are indeed geometric, requir-
ing the molecules to lie within a specified volume, or within
a certain distance of one another. Selecting the arbitrary con-
fining volume or maximum molecular separation is not nec-
essarily a problem: these are essentially variational param-
eters, chosen to match the free energy of the system
described by cluster populations to the true free energy of the
system described by the 6N degrees of freedom. However,
with geometric definitions no attempt can be made to elimi-
nate situations where component molecules are not energeti-
cally bound to the cluster. This has a consequence that the

decay of a cluster defined in such a manner is thennot Mar-
kovian. The rogue decays consist of situations where a mol-
ecule is unbound and simply passing by the other molecules.
When it passes out of range, the cluster would decay. How-
ever, the probability of cluster decay in these circumstances
is not independent of time: it depends on when the passer-by
first came within range of the other molecules. The required
time independence of a Markovian decay rate is a character-
istic of dynamics where molecules are bound for times much
longer than the time taken for a molecule to cross the cluster
at a typical velocity. Escape is stochastic, caused by the con-
centration of energy in one molecule by a random series of
collisions.

We have recently developed a definition of a cluster in-
volving energy rather than position.24 It is widely recognized
that an energetic rather than a positional criterion is an indi-
cator of a quasibound structure.19,23,27 We have added the
essential feature that in order to escape from a cluster, a
molecule needs not only to acquire positive energy, through
thermal fluctuations, but must also be able to move away
from the cluster, avoiding recapture. In order to check this
second requirement, it is necessary to perform molecular dy-
namics to determine the future trajectory of the system. It is
possible to implement such a scheme, and to determine mean
decay rates as a function of cluster energy and size.24 Similar
studies of the molecular dynamics of condensation and es-
cape have been performed by others, notably Schaafet al.26

We find that the decay rate is Markovian, so that clusters
defined in our physically realistic scheme show the necessary
features for use in the Becker–Do¨ring equations.

This paper takes our ideas a stage further. Calculating
mean decay rates by counting escaping molecules in molecu-
lar dynamics is quite time consuming, and it would be valu-
able to be able to extract this information in some other way.
This would allow our methodology to be extended to more
complex systems that would be too computationally demand-
ing to treat by direct simulation. Our strategy is to represent
the decay as a stochastic process, described by a suitable
mathematical scheme, and then to determine the parameters
which enter that scheme by studying the cluster trajectory.

In this paper we also illustrate the connection between
kinetic and thermodynamic treatments of nucleation. Kinetic
theories of nucleation are based on models of the elementary
rates of cluster growth and decay, while thermodynamic
models rely on calculating the work of formationDW* of an
unstable critical cluster. In Sec. II, we consider the Langevin
dynamics of molecular escape from a cluster, and show that
the rate of escape depends on the depth of the potential of
mean force holding a particle in the cluster. The potential of
mean force is also related to the steady state one-particle
density profile. A statistical mechanical analysis is then used
in Sec. III to establish that the depth of this potential is
related to a change in free energy associated with cluster
decay. Using these results, we can show that the kinetic
nucleation rate is proportional to exp(2DW* /kT), and hence
that the Becker–Do¨ring kinetic treatment is equivalent to the
thermodynamic treatment, at least in certain circumstances.
Furthermore, we can avoid the calculation of cluster free
energies7–10,12 if we wish, and compute potentials of mean

4429J. Chem. Phys., Vol. 120, No. 9, 1 March 2004 Molecular cluster decay

Downloaded 11 Mar 2004 to 128.40.2.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



force from molecular dynamics simulations instead, and
hence calculate decay rates. This could be a more convenient
route to the determination of nucleation rates.

In Sec. IV we illustrate these connections by estimating
cluster decay rates in various ways. We calculate potentials
of mean force, friction coefficients and particle density pro-
files, and hence a kinetic decay rate. We consider two ver-
sions of the rate prefactor: one involving the Langevin fric-
tion coefficient, and the other based on the principle of
detailed balance. We go on to describe a further approach to
the problem based on purely probabilistic arguments. The
information needed for all these schemes can be extracted
efficiently from the molecular dynamics simulations. We
show that the estimated mean lifetimes closely match the
lifetimes obtained by direct counting of molecular escapes.
In Sec. V we draw our conclusions and comment on the
application of our methods to more complex situations.

II. KINETIC THEORY OF CLUSTER DECAY

We begin by taking the point of view that cluster decay
corresponds fundamentally to the escape of a molecule from
a three dimensional potential well created by the other mol-
ecules, driven by a random force. Nowakowski and
Ruckenstein28,29 developed models of cluster decay starting
from a similar assumption. However, they modelled the es-
cape as a diffusive process along an energy coordinate, while
we consider the motion of a molecule in real space.

We model the radial motion of an individual molecule,
with respect to the cluster center of mass, using a stochastic
differential equation

mr̈5 f ~r !2mg ṙ 1 f̃ ~r ,t !, ~2!

wherer is the radial position,m is the molecular mass. The
right-hand side of Eq.~2! is the stochastic force on the mol-
ecule, representing the interactions with the other molecules
in the cluster.f (r ) is the mean~time- and velocity-averaged!
force on the molecule at positionr. The second and third
terms on the right-hand side of Eq.~2! introduce deviations
from the mean force: the velocity dependence of this devia-
tion is described using a dissipative term involving the fric-
tion coefficientg ~not to be confused with the cluster decay
rate g i). It represents the drag experienced by a molecule
moving through a cloud of other molecules. The stochastic
nature of the problem is represented byf̃ , a velocity- and
position-independent random force, with zero mean and cor-
relation function ^ f̃ (r ,t) f̃ (r ,t8)&5(2gkT/m)d(t2t8),
wherek is Boltzmann’s constant and whereT has the char-
acteristics of a temperature, as we shall see. Equation~2!
clearly takes the form of Langevin’s equation for noise-
driven dissipative motion in a potential well.

It is a standard manipulation30 to convert the Langevin
description, with large friction coefficient, into a Fokker–
Planck, or Smoluchowski equation,

]W
]t

5
1

mg S 2
]~ fW!

]r
1kT

]2W
]r 2 D , ~3!

which represents the evolution ofW(r ,t), the probability
density that the molecule should lie at radial positionr. The

right-hand side of the above equation may be written as
2]J/]r whereJ is a radial probability current given by

J5
1

mg S fW2kT
]W
]r D , ~4!

and so the steady state solution of Eq.~3! for the case when
J50 is

W~r !}exp~2F~r !/kT!, ~5!

where F(r ) is the potential of mean force, related to the
mean forcef (r ) through

f 52
dF

dr
. ~6!

We see now how the parameterT in the random force plays
the role of temperature, since Eq.~5! looks like a Boltzmann
distribution. TheJ50 solution is not what we are seeking,
however. The escape problem has a characteristic boundary
conditionW(r e)50, wherer e is the radius at which a par-
ticle escapes~is removed! from the system. We can imple-
ment this boundary condition by first writing the steady state
current in the form

J52
kT

mg
exp~2F/kT!

d

dr
~W exp~F/kT!!. ~7!

The currentJ is found by integrating Eq.~7!,

kT

mg
exp~F~0!/kT!W~0!5E

0

r eJ exp~F~r !/kT!dr , ~8!

which leads to

J5W~0!
kT

mg S E
0

r e
exp~~F~r !2F~0!!/kT!dr D 21

. ~9!

This theory has been extensively applied31 to the case of
particle escape over a barrier from a one-dimensional poten-
tial well, as illustrated in Fig. 1~a!. By expandingF(r ) as
F(r )'F(r e)2 1

2mve
2(r 2r e)

2 near the peak in the potential
at a radiusr e , one can evaluate the integral in Eq.~9!. As-
suming further that the potential well is harmonic near
r 50, so thatF(r )'F(0)1 1

2mv2r 2, and deep compared
with kT, one can also approximate W(r )
'(2/p)1/2r 0

21 exp(2r2/2r 0
2), where the profile widthr 0 is

given by r 05(kT/m)1/2v21, wherev is the natural angular
frequency of oscillation of a particle close to the bottom of
the well. Recall that we are here considering a one-
dimensional problem so thatW has dimensions of inverse
length. HenceW(0)'(2m/pkT)1/2v and we obtain the
Kramers escape rate32

J5
2vve

pg
exp~2DF/kT!, ~10!
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whereDF5F(r e)2F(0) is the depth of the potential well.
In our case, however, we need to consider the escape of a molecule from a three-dimensional potential of mean force into

free space, as shown in Fig. 1~b!. W(r ) is a probability per unit volume and the escape rate isgkin54pr e
2J, wherer e is the

radius at which escape is considered to take place. As before, we haveW(0)5(*0
r e4pr 2 exp(2(F(r)2F(0))/kT)dr)21 and the

escape rate is

gkin5
kTre

2

mg

exp~2DF/kT!

~*0
r e exp~~F~r !2F~r e!!/kT!dr !~*0

r er 2 exp~2~F~r !2F~0!!/kT!dr !
. ~11!

The value ofr e seems arbitrary, but in fact it is related to the
cluster definition; the mathematical scheme which deter-
mines whether a molecule may be classed as part of a cluster
or not. We shall return to this point later. The principal fea-
ture of Eq.~11! is the exponential dependence on the depth
DF of the potential of mean force. The shape of the potential
determines the integrals in the denominator. The time scale
in the escape rate is provided by the friction coefficient.
Therefore, if we can establish the potential of mean force, the
effective temperature and the friction coefficient, by studying
a molecular dynamics trajectory, for example, then we can
use this Langevin analysis to determine the kinetic decay rate
gkin.

III. THERMODYNAMIC THEORY OF CLUSTER DECAY

A. Detailed balance in equilibrium

We now turn our attention to relating the kinetic descrip-
tion of cluster decay just described to standard treatments of
the problem starting from equilibrium thermodynamics. Such
treatments involve free energy differences between clusters
of various sizes. How does the cluster free energy relate to
the potential of mean force, and what is the fundamental
inverse time scale in the theory corresponding to the friction
coefficient?

The thermodynamic, or equivalently statistical mechani-
cal treatment of cluster decay is based on the following de-
tailed balance condition in the population dynamics of clus-
ters described by Eq.~1!:

b i 21ni 21
e 5g ini

e , ~12!

whereni
e is the population of clusters of sizei in thermody-

namic equilibrium with a vapor, which for convenience we
take to be a saturated vapor. To a good approximation,5 these
populations are given by

ni
e5Zi exp~ ims /kT!, ~13!

where ms is the chemical potential of the saturated vapor,
andZi is the cluster canonical partition function, given by

Zi5
1

i !h3i E 8)
k51

i

dr k dpk exp~2Hi /kT!, ~14!

whereh is Planck’s constant,r k andpk are the position and
momentum of particlek, and Hi($r k ,pk%) is the cluster
Hamiltonian, which takes the usual formHi5U($r k2r l%)
1(1

i pk
2/2m with m representing the particle mass. The prime

on the integral sign denotes the limitation of the phase space
integration to molecular configurations satisfying a pre-
scribed cluster definition.Zi is, of course, related to the clus-
ter free energyFi throughZi5exp(2Fi /kT). The growth rate
b i 21 is proportional to the population of monomers in the
vapor, and so we can writeb i 215b i 218 n1 . Hence, according
to Eq. ~13!,

g i5b i 218 exp~2~F11Fi 212Fi !/kT!

5b i 218 exp~2DF/kT!, ~15!

whereDF5F11Fi 212Fi is the free energy change associ-
ated with monomer loss. It remains to evaluate the growth
coefficientb i 218 , but this is not straightforward. In the ab-
sence of a better approach, the kinetic theory of collisions
between a monomer and a spherical cluster is often used to
provide the estimateb i 218 5(R2/V)(8pkT/m)1/2, whereR is
the somewhat ill-defined (i 21)-cluster radius, andV is the
system volume.

We now have two expressions, Eqs.~11! and ~15!, for
the cluster decay rate. These must be consistent with each
other, at least in some circumstances. The principal similarity
is the presence in each of an exponential of, respectively, the

FIG. 1. In the Kramers problem, the escape of a particle
is considered for the type of potential shown in~a!, with
a locally harmonic well centered atr 50 and a locally
harmonic barrier atr 5r e . For particle escape from a
cluster, the confining potential of mean force is more
like ~b!. The escape radiusr e is arbitrary, but can be
related to a typical position at which the cluster defini-
tion is violated.
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depth of the potential of mean force, and the change in free
energy upon decay. We seek now to demonstrate that these
quantities are related.

B. The potential of mean force in statistical
mechanics

The strategy we shall follow is to evaluate the potential
of mean force acting on a particle in the cluster using canoni-
cal statistical mechanics, and to see how it relates to cluster
free energies.

Let us consider the mean radial force on a molecule at a
distancer 1 from the center of mass of a cluster ofi mol-
ecules. Without loss of generality, let us fix the origin of
coordinates at the center of mass of the system, and also set
the total linear momentum to zero. The mean radial force is
then given by the following phase space integral:

f ~r1!5
1

j~r1!
E8)

k52

i

dr k dpk dp1 dS (
k51

i

r kD dS (
k51

i

pkD
3S 2

]Hi

]r 1
Dexp~2Hi /kT!, ~16!

where the function

j~r1!5E8)
k52

i

dr k dpk dp1 dS (
k51

i

r kD dS (
k51

i

pkD
3exp~2Hi /kT!, ~17!

when normalized is related to the equilibrium one-particle
probability density,

r~r !5j~r !Y E8
j~r1!dr1 . ~18!

By symmetry,j is a function of radius only. We proceed by
considering its radial derivative

dj

dr1
5

1

kT E8)
k52

i

dr k dpk dp1 dS (
k51

i

r kD dS (
k51

i

pkD
3S 2

]Hi

]r 1
Dexp~2Hi /kT!

1E8)
k52

i

dr k dpk dp1

]

]r 1
S dS (

k51

i

r kD D
3dS (

k51

i

pkD exp~2Hi /kT!, ~19!

assuming the integration limits do not depend onr 1 . Fortu-
nately, the second term on the right-hand side of Eq.~19! can
be simplified. We represent the derivative of the delta func-
tion as the limit of (d((2

i r k1(r 11e) r̂1)2d((2
i r k1(r 1

2e) r̂1))/2e as e→0, wherer̂1 is a unit vector in the direc-
tion of r1 . Consider the integral

I 5
1

2e E8)
k52

i

dr k dpk dp1 dS (
k52

i

r k1~r 11e! r̂1D
3dS (

k51

i

pkD exp~2Hi /kT!, ~20!

and make the transformationr k→r k2er1 /( i 21) for k
52,i . If Hi is a function of spatial differences (r k2r l) this
term becomes

I 5
1

2e E8)
k52

i

dr k dpk dp1 dS (
k51

i

r kD dS (
k51

i

pkD
3exp~2Hi~r11er1 /~ i 21!!/kT!, ~21!

which may be expanded as

I 5
1

2e E8)
k52

i

dr k dpk dp1 dS (
k51

i

r kD dS (
k51

i

pkD
3exp~2Hi~r1!/kT!S 12

e

~ i 21!kT

]Hi

]r 1
D . ~22!

Hence

dj

dr1
5

1

kT S 11
1

i 21D E8)
k52

i

dr k dpk dp1 dS (
k51

i

r kD
3dS (

k51

i

pkD S 2
]Hi

]r 1
Dexp~2Hi /kT!, ~23!

or more simply

dj

dr1
5

1

kT S i

i 21D f ~r 1!j~r 1!, ~24!

which can be integrated to give

j~r 1!5j~0!expS 2 i ~F~r 1!2F~0!!

~ i 21!kT D , ~25!

thus establishing through Eq.~18! a connection between the
potential of mean forceF and the equilibrium one-particle
density profile,

r~r 1!}expS 2
iF~r 1!

~ i 21!kTD . ~26!

This is the analogue of the particle probability densityW(r )
in the Langevin problem, which is related to the potential of
mean force according to Eq.~5!. In Eq. ~26! we see an ad-
ditional factor ofi /( i 21). It appears because the mean force
on a particle in the cluster is created by the remainingi 21
particles with the added constraint that the center of mass of
the entire system lies at the origin. If the first delta function
in Eq. ~16! had not includedr1 in the sum, then the factor
i /( i 21) in Eq. ~26! would not have arisen. Thus the fixed
center of mass constraint is responsible for the difference
between Eqs.~5! and ~26!. As a check, consider a two
particle system with interaction potentialf(r ). When the
radial displacement of particle 1 from the center of mass
is r 1 , the mean force is f (r 1)52f8(2r 1). The
potential of mean force is F(r 1)52* r 1f (r )dr
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5*r1f8(2r)dr5(1/2)*2r 1f8(y)dy5f(2r 1)/2. Hence r(r 1)
}exp(2f(2r1)/kT) in agreement with elementary expecta-
tions.

Now let us establish a connection betweenj and a clus-
ter partition function. Let us consider

1

h3 E Zi 21 exp~2p1
2/2mkT!dp1

5
1

h3

1

~ i 21!!h3~ i 21! E8)
k52

i

dr k dpk dp1

3exp~2~Hi 211p1
2/2m!/kT!, ~27!

and then insert unit integrals*d((1
i r k2R)dR and

*d((1
i pk2P)dP into the right-hand side. Particle 1 intro-

duced here is assumed to lie far away from the other par-
ticles. Next make a transformation of coordinates$r k→r k

2R/ i ,R→R% for k51,i , and $pk→pk2P/ i ,P→P% for k
51,i , for which the Jacobian is unity, giving

Zi 21

l3
5

1

~ i 21!!h3i E8)
k52

i

dr k dpk dp1 dS (
k51

i

r kD dR

3dS (
k51

i

pkD dPexp~2~Hi 211p1
2/2m

1P2/2mi2!/kT!, ~28!

where l is the thermal de Broglie wavelengthl
5h/(2pmkT)1/2. The particle positionsr1 are measured
with respect to the center of massR/ i , and the momenta with
respect to the total momentumP. Now, if particle 1 is very
distant from the remaining particles,Hi 211p1

2/2m'Hi .
Performing the integrals overR andP then gives

Zi 21

l3
5

V

~ i 21!!h3~ i 21!

i 3

l3 E8)
k52

i

dr k dpk dp1

3dS (
k51

i

r kD dS (
k51

i

pkD exp~2Hi~r 1→`!/kT!,

~29!

whereV is the system volume, or equivalently

Zi 215
Vi3

~ i 21!!h3~ i 21!
j~`!. ~30!

Therefore we have established the connection

j~`!5
h3~ i 21!~ i 21!!

Vi3
exp~2Fi 21 /kT!. ~31!

Similarly, j~0! is related toFi . Equation~14! may be writ-
ten, using the same insertions and transformations,

Zi5
1

i !h3i E8)
k51

i

dr k dpkdS (
k51

i

r kD dR dS (
k51

i

pkD dP

3exp~2~Hi1P2/2mi2!/kT!, ~32!

which yields

Zi5
1

i !h3i

h3Vi3

l3 E8
j~r1!dr1 , ~33!

so that *8j(r1)dr15(h3(i 21)i !l3/Vi3)exp(2Fi /kT). How-
ever,*8j(r1)dr15j(0)/r(0) from Eq.~18!, so

j~0!5r~0!
h3~ i 21!i !l3

Vi3
exp~2Fi /kT!. ~34!

Hence from Eqs.~25!, ~31!, and ~34! we can establish our
prime result

1

l3
exp~2~Fi 212Fi !/kT!5 ir~0!expS 2 i ~F~`!2F~0!!

~ i 21!kT D ,

~35!

or equivalently

Fi2Fi 215kT ln~ ir i~0!l3!2
i

i 21
DF i , ~36!

where DF i5F(`)2F(0). The subscript i on DF i indi-
cates that the depth of the potential of mean force depends on
cluster size, and similarly the one-particle density at the cen-
ter of mass isi-dependent, and hence the need for a subscript
on r~0!.

The expression for the free energy change in Eq.~36!
makes perfect physical sense, particularly if we rewrite it in
the form

DF5F11Fi 212Fi5
i

i 21
DF i2kT ln~ ir i~0!V!, ~37!

with F152kT ln(V/l3). The left-hand side is the change in
free energy upon monomer evaporation from a cluster of size
i . The first term on the right-hand side may be written as a
sum of two terms (11@1/(i 21)#)DF i . The first termDF i

is the reversible work done on a molecule by external forces
when it is slowly dragged out of ani-cluster, but work is also
done on the remaining molecules in order to keep the total
center of mass stationary. The total force on the remaining
molecules is equal and opposite to that on the single mol-
ecule, but the distance their center of mass moves isi 21
times smaller. The free energy change will therefore include
this reversible work. This accounts for the second contribu-
tion to the sum. Furthermore, there is an entropic change in
free energy upon first identifying and holding one of the
component molecules of the cluster stationary at the center
of mass, and then releasing it from the position outside the
cluster to which it has been pulled. Considering the cluster
for the moment to be a bag of volumev( i ), the first change
is roughly kT ln(v(i)/i) ~the factor of 1/i to account for the
choice in molecule! and the second is2kT ln V. We note that
v( i );1/r(0) and therefore recover the last term on the
right-hand side of Eq.~37!.

Equation~35! is an exact relation between the depth of
the potential of mean force confining a molecule to a cluster,
and the difference in cluster free energy before and after the
loss of that molecule. It suggests a method for calculating
differences in free energy betweeni- and (i 21)-clusters by
evaluating the depth of the potential of mean force confining
particles to ani-cluster, together with the particle probability
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density at the center of mass. It is an alternative to methods
such as umbrella sampling, which has been applied to this
very problem.9,12

We now combine Eq.~37! with the detailed balance ex-
pression~15! to get thei-cluster decay rate

g i
therm5F S 8pkT

m D 1/2

R2G ir~0!expS 2 iDF i

~ i 21!kTD . ~38!

This result is based on the assumption that the decay rate in
a situation of detailed balance would apply for cases when

the system is out of equilibrium. The prefactor in square
brackets is an approximation based on kinetic theory for the
collision rate of a monomer onto a spherical cluster of
radiusR.

Equation ~38! should be compared with Eq.~11!, the
result from Langevin kinetics. First, though, we need to mul-
tiply the potential in Eq.~11! by a factori /( i 21), to take
account of the condition of fixed center of mass, and we
must also multiplygkin by i since any one of thei confined
particles might escape. We should also add subscriptsi to the
well depth and the escape rate. We arrive at

g i
kin5

ikTre
2

mg

exp~2 iDF i /~ i 21!kT!

~*0
r e exp~ i ~F~r !2F~r e!!/~ i 21!kT!dr !~*0

r er 2 exp~2 i ~F~r !2F~0!!/~ i 21!kT!dr !
. ~39!

The principal difference between Eqs.~38! and~39! then lies
in the prefactors multiplying the exponential terms. This
should not be a surprise since the Langevin equation ap-
proach, and the friction coefficient which appears in Eq.
~39!, is a phenomenological representation of the molecular
dynamics, and as we have just noted, the prefactor in the
thermodynamic escape rate is only approximate. The radiir e

andR in each expression should take approximately the same
value, but they might differ. The reliability of the two pref-
actors may be judged by comparison with real escape rates,
which we shall address in the next section.

First, though, there are some interesting further connec-
tions to draw between the potential of mean force and cluster
properties. In thei→` limit, Fi2Fi 21 is equal to the chemi-
cal potential of the condensate and hence the chemical po-
tential ms5kT ln(psl

3/kT) of a saturated vapor, whereps is
the saturated vapor pressure. If we employ Eq.~36!, and use
ir i(0)'r l in the limit of largei, wherer l is the density of
the condensate, then

DF`52kT lnS ps

r lkTD . ~40!

This is similar to the Clausius–Clapeyron equation, showing
that DF` is related to the molecular latent heat of evapora-
tion.

Another useful procedure is to construct the equilibrium
populationni

e of an i-cluster by repeated use of Eq.~36!. We
write

Fi2Fi 212ms5DF`2
i

i 21
DF i1kT lnS ir i~0!

r l
D , ~41!

so that through Eq.~13!,

ni
e5exp~2~Fi2 ims!/kT!

5n2
e)

j 53

i
r l

j r j~0!
expS 2

1

kT (
j 53

i S DF`2
j

j 21
DF j D D .

~42!

The reference population chosen here is that of the dimer
rather than the monomer sincer2(0) is zero. However, the
dimer population can be related to the monomer population
throughn2

e'2B2Vrv
2, whereB2 is the second virial coeffi-

cient of the vapor, defined through the equationp5kT(rv
1B2rv

2), with p and rv the vapor pressure and density, re-
spectively. Equation~42! is therefore an expression for the
equilibrium population ofi-clusters given in terms of quan-
tities readily determined from molecular dynamics studies of
clusters: densities at the center of mass and depths of poten-
tials of mean force. We do not need to calculate free energies
explicitly. We intend to explore Eq.~42! in future work.

IV. CALCULATING THE ESCAPE RATE
FROM MD SIMULATION

A. Cluster definition and molecular simulation

We have previously described microcanonical molecular
dynamics ~MD! simulations of clusters of argon atoms.24

These were performed both to implement new ideas for a
realistic cluster definition and to compute cluster lifetimes
for a variety of sizes and energies. Our aim is now to calcu-
late the lifetime of these clusters indirectly by studying the
simulation trajectory and evaluating the cluster properties
needed in the theoretical formulas described in the preceding
section. We shall also develop here a third, simplified proce-
dure for estimating the lifetime, using a probabilistic ap-
proach. These studies will demonstrate that the complex dy-
namical behavior of molecular clusters can be described in
terms of a simple model, parametrized through detailed MD
simulations.

Any scheme to estimate the lifetime must implement a
cluster definition. We consider that a particle becomes un-
bound when its kinetic energyK becomes greater than the
modulus of its potential energyU ~i.e., total energy is posi-
tive!, but only if the dynamics subsequently carry the particle
far away from the cluster, avoiding recapture. Not all par-
ticles that acquire positive energy necessarily escape. This is
illustrated in Fig. 2, which shows the total energyK1U of a
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particle near the edge of a cluster as a function of time. Only
one of the three positive energy excursions~indicated by
arrows! lead to decay, giving a recapture probabilityRc

52/3 in this example. From counting the proportion of posi-
tive energy excursions that lead to cluster decay in extensive
MD simulations, the success factor 12Rc was found to be
about 0.12 for clusters of about 50 atoms. Only about one in
eight positive energy excursions leads to escape. A higher
proportion of particles escape when the clusters are smaller
and the surface curvature is greater, as would be expected.

B. Potential of mean force approach

1. Langevin-derived prefactor

We can use the MD simulations to calculate the potential
of mean force, friction coefficient and temperature for use in
the theoretical expressions for the decay rate derived in the
preceding sections. The potential of mean forceF(r ) is
found by averaging the force on a particle when at a radiusr
from the cluster center of mass. The temperatureT of the
cluster is obtained by numerically fitting a Maxwell–
Boltzmann distribution to the particle velocity distributions
obtained from each trajectory.

The friction coefficient is found by mapping the actual
molecular dynamics onto the Langevin dynamics. The radial
component of the apparent acceleration of a particlea
5(v(t1dt/2)2v(t2dt/2))/dt for a given time intervaldt
along the MD trajectory will not in general equal the radial
component of the actual force on the particle at timet di-
vided by the mass, due to the finite value ofdt. We ascribe
the discrepancy to the sum of the friction force and the ran-
dom force in the Langevin Eq.~2!. It is clear then what to do:
we average the mean discrepancy force, and plot it against
particle velocity to extract the friction force element.

In Fig. 3 we give such a plot for an example dataset with
dt50.4 ps, demonstrating the linear correlation between
friction force and velocity. The slope of the dotted line fit to
this behavior is our estimate forg. For different values ofdt
a similar correlation is found, and the slope of the linear fit is
shown againstdt in Fig. 4. Fordt→0 molecular dynamics

and not Langevin dynamics then holds so there is no discrep-
ancy force and the apparentg goes to zero. For largedt, the
correlation between force discrepancy and velocity is lost in
noise from the random force contribution. There is a regime
between these limits where the apparent friction coefficient is
about 2.5 ps21, suggesting that Langevin dynamics is an ad-
equate description for time scalesdt in the region of 0.4 ps.

A typical profile of potential of mean forceF(r ) for a
cluster of 50 argon atoms at22.98 kJ/mol per particle~or
aboutT'50.6 K24! is shown in Fig. 5. The profile for this
size is reasonably flat at the cluster center and then rises to a
plateau. The one-particle density profile given by Eq.~26! is
therefore approximately uniform out to a radius of about 6 Å,
and then falls to zero, as shown in Fig. 6. This density profile

FIG. 2. The total energy and distance from center of mass of a particle near
the edge of a cluster, in a typical example. The vertical arrows indicate the
three energy excursions. Only the last of these events leads to cluster decay.

FIG. 3. The average radial discrepancy force per unit mass on a particle in
the cluster, plotted against particle radial velocity, obtained by analyzing the
dynamics on a time intervaldt50.4 ps. The dotted line represents a fit to
the expected linear behavior. The slope is the negative of the friction coef-
ficient.

FIG. 4. The apparent friction coefficient in the Langevin interpretation of
the molecular dynamics, for a range of timestepsdt used in the evaluation
of the particle acceleration. The expected behavior at large and smalldt is
seen, and the plateau region centered at aboutdt50.3 ps represents the
optimal value of the friction coefficientg.
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is reminiscent of the density profiles calculated in density
functional treatments of cluster structure.33

Now we can calculate the kinetic decay rate using Eq.
~11!. The results are shown in Fig. 7. We employ escape radii
r e of 11, 12, 14.5, and 17 Å fori 510, 25, 50, and 100,
respectively. These are estimates of the radii at which the
potential of mean force first reaches zero for each cluster
size, averaged over cluster energy. The condition for particle
escape is therefore that the particle is able to reach the top of
the free energy barrier, though this is a very rough treatment
of a complicated problem. The idea is illustrated in Fig. 5 for
the case of thei 550 cluster at22.98 kJ/mol per particle.
The escape radiusr e is in the region of the 14.5 Å quoted.
Plots for different energies show slightly different escape
positions ~colder ones are more compact!, and rather than
complicate the model by using an energy dependent value of
r e , we choose a value dependent only on cluster size.

An energy-independent escape radius is equivalent to
imposing a cluster definition that requires particles to lie
within a given distance of the center of mass, irrespective of

energy. We have previously demonstrated that a geometric
cluster definition with an energy-independent Stillinger ra-
dius cannot account for the observed cluster stabilities.24

Therefore, deviations are therefore to be expected.
We can simplify the model so that only the depth of the

well and not its shape enters the theoretical expression. We
can parametrize of the model to fit to the data. If we assume
the potential of mean force is a square well with depthDF i

and radiusRs , then Eq.~39! reduces to

g i
kin5

3ir ekT

mgRs
3~12~Rs /r e!!

exp~2 iDF i /~ i 21!kT!, ~43!

if DF i@kT. We can estimate the range of the square wellRs

using the one-particle profiler(r ) and the escape radius
takes a position about one Lennard-Joness ~;3.4 Å! beyond
this. Reasonable choices of the representative radii for the
various cluster sizes can produce lifetimes in as good agree-
ment with the directly observed data as the lifetimes given in
Fig. 7. Working with Eq.~43! has some advantages over Eq.
~11! since the required input is easier to determine.

2. Detailed balance-derived prefactor

An alternative approach to estimating the decay rate is to
employ Eq.~38!, based on detailed balance and thermody-
namics. This time we need to estimate the radiusR of a shell
defining the capture cross section of the cluster. Symmetry
would suggest that we should estimateR by determining the
radius at which the particle escape is most likely. This radius
is obtained for each cluster size using the probabilistic
method described in the following section. This gives cap-
ture radiiR of 8, 10, 11, and 12 Å fori 510, 25, 50, and 100,
respectively, as illustrated fori 550 in Fig. 9~e!.

We need estimates of the one-particle density at the ori-
gin r~0! in order to use Eq.~38!. For example, Fig. 6 sug-
gests a value of 5.031024 Å23 for the i 550 cluster. Similar
analyses of data can provider~0! for all cluster sizes and
energies in our simulations. We can then calculate the mean
lifetimes shown in Fig. 8. Once again, agreement with the
directly observed mean lifetimes is reasonable, bearing in

FIG. 5. The potential of mean force for a 50 atom argon cluster atT
'50.6 K, obtained from averages of the mean force as a function of radius,
derived from MD simulation.

FIG. 6. The one particle density profiler(r ) for the 50 atom argon cluster at
an energy of22.98 kJ mol21 per particle (T'50.6 K), obtained from MD
simulation.

FIG. 7. Mean lifetimes of argon clusters of various sizes and at a range of
total energies, calculated using the kinetic approach of Eq.~39! ~open
circles! and measured directly by MD simulation~filled circles!.
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mind the estimation ofR. ChoosingR on a different basis
might improve the fit. The error in the predicted values is
energy dependent, which is consistent with our previous con-
clusions that a geometric cluster definition cannot reproduce
the correct energy dependence of decay rates.

We note that the prefactors in Eqs.~38! and ~43! have
similar structure. Ifg21 is a relaxation time, which we esti-

mate to be a typical molecular separationR/ i 1/3 divided by a
typical thermal velocity (kT/m)1/2, and if we estimate the
central one-particle density to ber(0);R23 then the pref-
actor in ~38! reduces to (8p)1/2kTi2/3/(mgR2), showing
clear similarities to the prefactor in Eq.~43!.

C. Probabilistic approach

The value of MD simulation is that a wealth of informa-
tion is available about the system under consideration. We
have already exploited this in fixing the parameters for the
kinetic and thermodynamic treatments. But we can go further
and develop a third, probabilistic approach to estimate the
cluster decay rate. It turns out that this approach reproduces
the observed decay rates as well as if not better than the
approaches described in the preceding section, and involves
fewer assumptions.

The simulation trajectories are used to calculate the
probability density P(r )54pr 2r(r ) for a particle to be
found at a particular distancer from the center of mass. An
example is shown in Fig. 9~a!. Similarly, the means and vari-
ances of the single particle kinetic and potential energiesK
andU, respectively, can be obtained as a function ofr. The
distribution of the potential energy of a particle at a given
radiusr is approximately Gaussian. The mean potential en-
ergy Ū(r ) as a function ofr is shown in Fig. 9~b!. Note

FIG. 8. Mean lifetimes of argon clusters of various sizes and at a range of
total energies, calculated using the thermodynamic approach of Eq.~38!
~open circles! and measured by MD simulation~filled circles!.

FIG. 9. These plots illustrate the probabilistic method
for estimating escape probabilityPesc. In ~a! the one-
particle probability densityP(r ) is shown as a function
of distancer from the center of mass. The data shown is
for the 50 particle cluster at an energy of22.98
kJ mol21 ~Ref. 24!. In ~b! we show the mean potential
energy well created by this 50 particle cluster. In~c!, we
give, on the left, the normalized probability distribu-
tions for the potential energyU ~full line! and the ki-
netic energyK ~dashed line! at r 512 Å. For conve-
nience, the observed Maxwell–Boltzmann kinetic
energy distribution is approximated by a Gaussian, as
shown. The normalized probability distribution for the
total energy, shown on the right, is obtained by combin-
ing these two distributions. Integrating this distribution
for positive energies gives the probability thatK.uUu
for this value ofr. The derived probability that a par-
ticle has positive energy at a given positionr is shown
in ~d!, again for a 50 particle cluster at an energy of
22.98 kJ mol21 particle21. The probability density that
a particle at positionr has positive energy is then the
product of the distributions in~a! and~d!. Two cases are
shown in~e!, for 50 particle clusters at temperatures of
T550.6 K ~full line! andT555.4 K ~dashed line!. The
probability that a particle should acquire positive en-
ergy Ppos is then the area under these curves.

4437J. Chem. Phys., Vol. 120, No. 9, 1 March 2004 Molecular cluster decay

Downloaded 11 Mar 2004 to 128.40.2.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



however that it is the potential of mean forceF(r ) and not
Ū(r ) that is responsible for the binding, and one should con-
trast the shapes ofŪ andF in Fig. 5.

Let us now calculate how often particles violate our
cluster definition. First, they must acquire a total energy
greater than zero. The probabilityP(K.uUu;r ) that a par-
ticle hasK.uUu at a givenr can be calculated by combining
the kinetic and potential energy probability distributions as
shown schematically in Fig. 9~c!, and integrating over the
states whose total energy is positive. For convenience, we
make the approximation that the kinetic energy distribution
can be treated as a Gaussian. The total energy distribution
can then be characterized by adding the means of the indi-
vidual distributions and their variances in quadrature. This
simplification only introduces a small error since it is the
larger variance of the potential energy which dominates the
combined energy distribution. The resulting probability pro-
file P(K.uUu;r ), is shown in Fig. 9~d!. As would be ex-
pected, if a particle is close to the top of the well then there
is a good probability that its total energy will be positive.
Conversely, particles very close to the center of mass will
always be energetically bound. The probability density that a
particle will be found at positionr with positive energy is
then obtained by multiplyingP(r ) by P(K.uUu;r ). The
probability Ppos that a particle in the cluster possesses posi-
tive energy is then given by integrating the resulting distri-
bution overr as shown in Fig. 9~e!. The probability that it
might then escape isPpos(12Rc).

A correction must then be made to account for the fact
that the probability density functionP(r ) acquired from the
MD is depleted by the exclusion of configurations corre-
sponding to decay events, since the trajectories are post-
processed to remove unbound states as described in Ref. 24.
Therefore, we only see the positive energy excursions that do
not lead to decay: in Fig. 2 the excursion leading to escape
would be ignored and we would count only two events in-
stead of three. The actual number of such events should be
obtained from the apparent number by renormalization by a
factor of 1/Rc , or about 1/0.78'1.28 for the 50-cluster. This
method also provides the velocity distribution for the escap-
ing atoms at the instant of decay and when they have com-
pletely separated from the cluster, as shown in Fig. 10.

It remains to determine a time scalet for the decay rate,
or equivalently an attempt rate for escape 1/t. We have seen
that this time scale is provided in the kinetic approach by the
Langevin friction coefficient; in the thermodynamic ap-
proach by a capture rate of monomers by a cluster, together
with a detailed balance condition, and in other ways in other
treatments.15 We estimate the time scale from our MD simu-
lations in the following way. Encounters with neighboring
particles cause fluctuations in the energy of a particle. These
fluctuations drive the slower diffusion of the particle’s posi-
tion within the potential well, but are also the driving force
behind the excursion of a particle into a positive energy state.
We regard the energy fluctuation time scale as the inverse of
the frequency of attempts to achieve positive energy. The
time scalet(r ) is therefore obtained by calculating the aver-
age time for the total energy of a particle to pass through its
mean value at a given value ofr, and it is the time scaletedge

for r near the edge of the cluster that is relevant to the escape
process. The decay rate of a cluster of sizei is then given by

g i
prob5

Ppos~12Rc!

tedge~ i !Rc
. ~44!

Figure 11 shows the mean lifetimes obtained using this
probabilistic scheme for a range of cluster sizes and energies.
There is clearly an excellent agreement with the results ob-
tained previously24 through direct simulation. The probabi-
listic, single particle model of the cluster dynamics therefore
provides a very good representation of the complex many-
body problem.

FIG. 10. The velocity distribution for the escaping atoms at the instant of
cluster decay~dashed line! compared with that for particles bound within the
cluster ~dotted line!. The data shown is for a 50 particle cluster atT
'50.6 K. The particles that escape are colder than the average: they have
given up kinetic energy in favor of potential energy as the bonds with their
neighbors are loosened. The energy distribution of the escaped particles
when far from the cluster is shown as a solid line. It clearly does not take the
equilibrium shape.

FIG. 11. A comparison of the cluster lifetimes calculated using the proba-
bilistic method~open circles! with those measured from the MD simulations
~filled circles!.
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V. CONCLUSIONS

In this paper we have developed two statistical models,
one based on stochastic kinetics and the other on probabili-
ties, to account for the observed rates of decay of simple
molecular clusters. The stochastic kinetics approach is based
on a representation of single molecule motion using a Lange-
vin equation of motion, and the probabilistic model uses data
acquired from molecular dynamics simulations to determine
the statistics of how often molecules violate the imposed
cluster definition and leave.

These statistical models enable us to view the evapora-
tion of a molecule from a quasibound many-body system as
a single particle escape problem. Both the kinetic and the
probabilistic models can reproduce the measured cluster life-
times to a high degree of accuracy. This suggests that it
should be possible to develop methods to obtain decay rates
for clusters that are so long lived that their lifetime would be
impossible to measure directly. The accuracy of the methods
in predicting cluster lifetimes for such systems will depend
upon the amount of data available for use in the analysis. In
particular, it is necessary to generate some nearly unbound
configurations in order to determine the depths of the poten-
tial energy well and the potential of mean force. Simulation
data where molecules are extracted slowly from the cluster
by an external force, or allowed to drift towards the cluster
from outside the simulation cell, could be employed where
necessary to provide the required information.

These schemes are very similar in spirit to the potential
of mean force calculations that are routinely used in MD
studies to obtain thermodynamic quantities for complex
systems.34 Our methods are precisely designed to enable us
to obtain accurate kinetic data for the study of nonequilib-
rium processes, such as nucleation.

We have taken the view here that kinetic or probabilistic
modelling provides perhaps the most realistic basis for deter-
mining the rate of decay, though equilibrium thermodynamic
methods have traditionally been the principal tools in this
area. However, we have made some progress towards estab-
lishing connections between the kinetic and thermodynamic
approaches. In particular, we have shown that the depth of
the confining potential of mean force, which is a major in-
gredient in the kinetic statistical decay rate, may be related to
the difference in free energy of the clusters with and without
the departing molecule, as long as the cluster is to a large
degree in internal thermal equilibrium. The kinetic rate of
escape is therefore related to equilibrium thermodynamic
properties of the cluster. This conclusion has been suggested
in the past by identifying nucleation rates derived by kinetic
schemes with rates derived on the basis of thermodynamic
transition state theory. The uncertainty in the calculated de-
cay rate lies, as has often been found before, in determining
the so-called kinetic prefactor, or equivalently a time scale.
In our kinetic approach, the time scale is provided by the
phenomenological Langevin friction coefficient, while the
thermodynamic methods used here appeal to a principle of
detailed balance and employ a time scale from the collision
rate between monomers and clusters. Other thermodynamic
approaches provide time scales in different ways. In the
probabilistic approach used here, the time scale is extracted

from the fluctuation behavior of single particle energies. Ul-
timately, it is a comparison with the decay rates determined
by microscopic molecular simulation that test the validity of
each of these approaches.

This connection between kinetic and thermodynamic ap-
proaches reveals potential points of departure too. The solu-
tions to the Langevin equation we employ are valid in the
strong friction regime. How does the kinetic decay rate com-
pare with a free energy difference when particle inertia is
taken into account~weak friction!? In this situation, the rela-
tively slow collision rate between particles within the cluster
may mean that the full range of microcanonical states is not
explored over the time scale of cluster decay. Similarly, sys-
tems that are slow to equilibrate after cluster growth may not
fully explore conformational space before a subsequent
monomer collision occurs, so that the current state of the
cluster~and hence its decay rate! becomes coupled to cluster
growth. In both of these situations, the relationship between
the free energy and the decay rate becomes less obvious.
There are clearly several areas where the relationship be-
tween the kinetics and thermodynamics of cluster decay is
yet to be explored.
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