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Molecular cluster decay viewed as escape from a potential of mean force
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We show that evaporation from a quasistable molecular cluster may be treated as a kinetic problem
involving the stochastically driven escape of a molecule from a potential of mean force. We derive
expressions for the decay rate, and a relationship between the depth of the potential and the change
in system free energy upon loss of a molecule from the cluster. This establishes a connection
between kinetic and thermodynamic treatments of evaporation, but also reveals differences in the
prefactor in the rate expression. We perform constant energy molecular dynamics simulations of
cluster dynamics to calculate potentials of mean force, friction coefficients and effective
temperatures for use in the kinetic analysis, and to compare the results with the directly observed
escape rates. We also use the simulations to estimate the escape rates by a probabilistic analysis. It
is much more efficient to calculate the decay rate by the methods we have developed than it is to
monitor escape directly, making these approaches potentially useful for the assessment of molecular
cluster stability. ©2004 American Institute of Physic§DOI: 10.1063/1.1644533

I. INTRODUCTION Becker and Dring.! The evolution ofn;(t), the mean popu-
lation at timet of clusters consisting of molecules, is de-
Vapors are not simply collections of separated moleculescribed by
or monomers: they also contain molecular clusters, growing
and evaporating by molecular gain and loss. These ephem- dn;
eral condensed structures play a central role in the nucleation gt =Bi-Ni—1= YN = BiNi+ ¥itaNisa, 1)
of aerosols from metastable, or supersaturated vapors. The
bulk condensed phase is thermodynamically more stable thaghereg; is the mean rate at which monomers attach to clus-
the metastable vapor, but the transition can only proceeekr of sizei, and+y; is the rate at which they detach from the
through the growth of molecular clusters, and so their stabilsame cluster. The terms on the right-hand side in @&y.
ity is crucial. If a cluster manages to grow larger than arepresent gain of i-clusters from the growth of
certain critical size, it stands a good chance of becoming & —1)-clusters, loss by the decay to«(1)-clusters, loss by
macroscopic droplet, but the dynamical route by which mol-growth to (+1)-clusters, and gain by decay of
ecules cluster and form a condensed phase is rather comp(ir+ 1)-clusters. The growth rate8, are proportional to the
cated. Given a configuration &f molecules(a specification monomer populationn,. The attachment of dimers and
of the positions and momenta of all the atgrasd a set of larger clusters is ignored. The Becker=ig equations may
intermolecular forces, we need to know how many laige  be solved for a metastable vapor to give a steady state nucle-
percritica) molecular agglomerates are likely to be producedation rate, which is related to the proportion of all initial
after a certain time. We need to compute this number for amolecular configurations that evolve to produce a large
arbitrary choice of initial condition consistent with the con- growing agglomerate in a certain time interval.
straints applied to the system, such as average density and Let us not forget, though, that the nucleation phenom-
temperature. The need to consider all possible initial statesnon is an example of irreversible thermodynamics, the sta-
requires a use of statistics: an ensemble average. tistical physics of systems far from equilibrium, and rigorous
The full characterization of the dynamics would require methods do not exist to treat such systems mathematfcally,
knowledge of the complete trajectory of &llparticles. This  though near-equilibrium approximations are available. The
is a huge amount of information, and the traditional simpli-complicated real molecular dynamics are represented in the
fication is to classify the system in terms of the populationsBecker—Doing treatment by the simple rate equations
of molecular clusters contained within it as time progressesshown above. The growth and decay processes are assumed
Rather than following the time evolution of5positions and to proceed at rates that depend only on the gross properties
momenta, the dynamics are represented by the evolution aff the system(temperature, etg.and not on the previous
the cluster populations. Often it is sufficient to monitor the history of individual clusters, or indeed of populations of
cluster populations up to a maximum cluster size of the ordeclusters. This is equivalent to saying that the transition pro-
of 100, and the amount of information involved is then con-cesses are Markovian: there is a constant probability per unit
siderably less than a full dynamical description. time that a cluster will gain or lose a molecule. So it is
The dynamics of population evolution for an ensembleimportant to note that the Becker—fug equations are em-
of trajectories, starting from all conceivable initial states, carpirical equations constructed to solve an idealized problem:
be modelled using a simple set of rate equations proposed lifie validity of the approximations when applying them to
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real nucleating systems has not been established. Despitiecay of a cluster defined in such a manner is th@nMar-
these simplifying assumptions, the Becker+idg model kovian The rogue decays consist of situations where a mol-
(and its various extensionss a very useful approach. The ecule is unbound and simply passing by the other molecules.
equations can be solved analytically, which is a great advan#/hen it passes out of range, the cluster would decay. How-
tage. It is a true kinetic treatment of nucleation, requiringever, the probability of cluster decay in these circumstances
only knowledge of the mean rates of cluster growth and deis not independent of time: it depends on when the passer-by
cay. first came within range of the other molecules. The required
The main alternative point of view for describing the time independence of a Markovian decay rate is a character-
nucleation process is based on thermodynamics, or more pastic of dynamics where molecules are bound for times much
ticularly the theory of free energy fluctuations. One identifieslonger than the time taken for a molecule to cross the cluster
a transition state, again a molecular cluster, which is in unat a typical velocity. Escape is stochastic, caused by the con-
stable thermodynamic equilibrium with the metastablecentration of energy in one molecule by a random series of
vapor? According to the theory of free energy fluctuations, collisions.
such a state is formed with probability proportional to We have recently developed a definition of a cluster in-
exp(—AW*/kT), where AW* is the reversible work of for- volving energy rather than positidfilt is widely recognized
mation of the cluster. This approach is very useful, though ithat an energetic rather than a positional criterion is an indi-
is often implemented using continuum thermodynamicscator of a quasibound structuté?®2’ We have added the
ideas? and applying these to small molecular agglomerategssential feature that in order to escape from a cluster, a
raises a number of questions and problems. The classicatolecule needs not only to acquire positive energy, through
theory of nucleation may be derived in this way, by treatingthermal fluctuations, but must also be able to move away
the transition state as though it were a macroscopic droplefrom the cluster, avoiding recapture. In order to check this
Microscopic calculations of cluster free energies are moreecond requirement, it is necessary to perform molecular dy-
acceptable, but more laborious. namics to determine the future trajectory of the system. It is
One can establish a connection between the free energyossible to implement such a scheme, and to determine mean
fluctuation theory and the Becker—fg treatment if the decay rates as a function of cluster energy and®igémilar
rate coefficients in the latter are expressed as differences studies of the molecular dynamics of condensation and es-
free energy between various cluster sizééthough there is  cape have been performed by others, notably Scéiaf®
some uncertainty in the mapping, this connection can be uséVe find that the decay rate is Markovian, so that clusters
fully exploited. The decay rate in a kinetic treatment of clus-defined in our physically realistic scheme show the necessary
ter population dynamics is difficult to calculate, and so it isfeatures for use in the Becker—fug equations.
useful to be able to relate it to a thermodynamic quantity and  This paper takes our ideas a stage further. Calculating
then to calculate this quantity through equilibrium statisticalmean decay rates by counting escaping molecules in molecu-
mechanic$ 12 lar dynamics is quite time consuming, and it would be valu-
There is also scope for calculating a decay rate using thable to be able to extract this information in some other way.
near-equilibrium statistical mechanical techniques mentionedhis would allow our methodology to be extended to more
above, which employ a mix of equilibrium thermodynamic complex systems that would be too computationally demand-
properties of clusters and the kinetics of change. This bringig to treat by direct simulation. Our strategy is to represent
a notion of time into equilibrium thermodynamics which is the decay as a stochastic process, described by a suitable
otherwise absent, and which has to be added by ad-hoc amathematical scheme, and then to determine the parameters
guments from the kinetic theory of gases. The methods arehich enter that scheme by studying the cluster trajectory.
based on linearized nonequilibrium thermodynamics going In this paper we also illustrate the connection between
back to Onsagef and developed for this application by kinetic and thermodynamic treatments of nucleation. Kinetic
Regueraet al'* and by Schenteet al*® theories of nucleation are based on models of the elementary
Implicit in any microscopic theory of nucleation, how- rates of cluster growth and decay, while thermodynamic
ever, is the need for a clear definition of what is meant by anodels rely on calculating the work of formatidn\V* of an
cluster. This is a subtle matter, and one which has receivednstable critical cluster. In Sec. I, we consider the Langevin
considerable attentich”*>=2% Intuitively, a cluster should dynamics of molecular escape from a cluster, and show that
comprise a set of molecules located close to one another. Thike rate of escape depends on the depth of the potential of
simplest definitions employed are indeed geometric, requirmean force holding a particle in the cluster. The potential of
ing the molecules to lie within a specified volume, or within mean force is also related to the steady state one-particle
a certain distance of one another. Selecting the arbitrary cordensity profile. A statistical mechanical analysis is then used
fining volume or maximum molecular separation is not nec4in Sec. Il to establish that the depth of this potential is
essarily a problem: these are essentially variational paranrelated to a change in free energy associated with cluster
eters, chosen to match the free energy of the systerdecay. Using these results, we can show that the kinetic
described by cluster populations to the true free energy of thaucleation rate is proportional to expAW*/kT), and hence
system described by theNédegrees of freedom. However, that the Becker—Ding kinetic treatment is equivalent to the
with geometric definitions no attempt can be made to elimithermodynamic treatment, at least in certain circumstances.
nate situations where component molecules are not energetrurthermore, we can avoid the calculation of cluster free
cally bound to the cluster. This has a consequence that thenergie§'%!?if we wish, and compute potentials of mean
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force from molecular dynamics simulations instead, andight-hand side of the above equation may be written as
hence calculate decay rates. This could be a more convenientd 7/ dr where 7 is a radial probability current given by
route to the determination of nucleation rates.

In Sec. IV we illustrate these connections by estimating d
cluster decay rates in various ways. We calculate potentials J= m_y( fw— kTW)* (4)
of mean force, friction coefficients and particle density pro-
files, and hence a kinetic decay rate. We consider two Veryng o the steady state solution of Egj. for the case when
sions of the rate prefactor: one involving the Langevin fric- 7—q js
tion coefficient, and the other based on the principle of
detailed balance. We go on to describe a further approach to W(r)ocexp( — O (r)/KT), (5)
the problem based on purely probabilistic arguments. The
information needed for all these schemes can be extractgﬁhereq)(r) is the potential of mean force, related to the
efficiently from the molecular dynamics simulations. We aan forcef (r) through
show that the estimated mean lifetimes closely match the
lifetimes obtained by direct counting of molecular escapes. dd
In Sec. V we draw our conclusions and comment on the f=-——, (6)
application of our methods to more complex situations. dr

We see now how the paramefEiin the random force plays
II. KINETIC THEORY OF CLUSTER DECAY the role of temperature, since E&) looks like a Boltzmann

We begin by taking the point of view that cluster decay distribution. The7=0 solution is not what we are seeking,
corresponds fundamentally to the escape of a molecule frofiowever. The escape problem has a characteristic boundary
a three dimensional potential well created by the other molcondition W(r.) =0, wherer is the radius at which a par-
ecules, driven by a random force. Nowakowski andticle escapesis removed from the system. We can imple-
Ruckensteiff?° developed models of cluster decay startingment this boundary condition by first writing the steady state
from a similar assumption. However, they modelled the escurrent in the form
cape as a diffusive process along an energy coordinate, while
we consider the motion of a molecule in real space. KT d

We model the radial motion of an individual molecule, J== m—yexp(—(l)/kT)a(Wexp(d)/kT)). @
with respect to the cluster center of mass, using a stochastic
differential equation The current7 is found by integrating Eq(7),

mi="f(r)—myr+1(r,t), )

kKT e
wherer is the radial positionm is the molecular mass. The m—yexp((b(O)/kT)W(O)= JO Jexp(@(r)/kT)dr, (8)
right-hand side of Eq(2) is the stochastic force on the mol-
ecule, representing the interactions with the other molecules
in the clusterf(r) is the mear{time- and velocity-averaged which leads to
force on the molecule at position The second and third
terms on the right-hand side of E) introduce deviations k
from the mean force: the velocity dependence of this devia- J=W0) m_y
tion is described using a dissipative term involving the fric-

tion coefficienty (not to be confused with the cluster decay This theory has been extensively apphetb the case of

rate .7‘)' E repLesenlts tdhe fdrar? expelrlenlced _tlfz a moLecu!?article escape over a barrier from a one-dimensional poten-
moving through a cloud of other molecules. The stochastigy, well, as illustrated in Fig. (r). By expanding®(r) as

nature of the problem is represented fiya velocity- and D(r)~D(rg)— %mwg(r —r.)? near the peak in the potential
position-independent random force, with zero mean and cory; 4 radius,, one can evaluate the integral in E§). As-
relation  function  (f(r,)f(r,t"))=(2ykT/m)&(t—t"),  suming further that the potential well is harmonic near
wherek is Boltzmann’s constant and whefehas the char- =0 so that®(r)~®(0)+ imw? 2, and deep compared
acteristics of a temperature, as we shall see. Equdpn ith kT, one can also approximate W(r)
clearly takes the form of Langevin's equation for ”0i39'~(2/7-r)1’2r51exp(—r2/2r§), where the profile widthr, is

It is a standard manipulatidhto convert the Langevin  frequency of oscillation of a particle close to the bottom of
description, with large friction coefficient, into a Fokker— the well. Recall that we are here considering a one-

-1

freexp(@(r)—cp(O))/kT)dr) . (9)
0

Planck, or Smoluchowski equation, dimensional problem so tha® has dimensions of inverse
w1 AEW) 2W length. HenceW(0)~(2m/7kT)¥2w and we obtain the
— = = —, (3)  Kramers escape r
a my ar or?

which represents the evolution #/(r,t), the probability _ 20w, B

density that the molecule should lie at radial positioiThe J Ty X~ AG/KT), (19
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whereAd=®(r,) —P(0) is the depth of the potential well.
In our case, however, we need to consider the escape of a molecule from a three-dimensional potential of mean force into
free space, as shown in Figlbl. W(r) is a probability per unit volume and the escape ratgi&= 47127, wherer is the
radius at which escape is considered to take place. As before, weVig)e= (fge4wr2 exp(—(®(r)—d(0))kT)dr) " and the
escape rate is

kT exp(—A®/KT)
ykln: - - . (11)
My (fEexp((P(r)—D(re))/kT)dr) ([ fr? exp(— (P (r)—P(0))/kT)dr)
|
The value ofr, seems arbitrary, but in fact it is related to the n®=2Z; explius/kT), (13

cluster definition; the mathematical scheme which deter-
mines whether a molecule may be classed as part of a clustétere us is the chemical potential of the saturated vapor,
or not. We shall return to this point later. The principal fea-andZ; is the cluster canonical partition function, given by
ture of Eqg.(11) is the exponential dependence on the depth
A® of the potential of mean force. The shape of the potential
determines the integrals in the denominator. The time scale
in the escape rate is provided by the friction coefficient.
Therefore, if we can establish the potential of mean force, th&hereh is Planck’s constant,, andp, are the position and
effective temperature and the friction coefficient, by studyingmomentum of particlek, and H;({r,p,}) is the cluster
a molecular dynamics trajectory, for example, then we carrlamiltonian, which takes the usual fort;=U({r—r})
use this Langevin analysis to determine the kinetic decay raté- =} pz/2m with m representing the particle mass. The prime
) on the integral sign denotes the limitation of the phase space
integration to molecular configurations satisfying a pre-
lIl. THERMODYNAMIC THEORY OF CLUSTER DECAY scribed cluster definitior; is, of course, related to the clus-
ter free energy; throughZ; =exp(—F;/kT). The growth rate
A. Detailed balance in equilibrium Bi_1 is proportional to the population of monomers in the
We now turn our attention to relating the kinetic descrip-vapor, and so we can wriig_; = 4{_,n;. Hence, according
tion of cluster decay just described to standard treatments ¢¢ Eg. (13),
the problem starting from equilibrium thermodynamics. Such ,
treatments involve free energy differences between clusters Yi=Bi-aexp = (Fi+Fi = F)/KT)
of various sizes. How does the cluster free energy relate to =B/ exp(— AF/KT), (15)
the potential of mean force, and what is the fundamental
inverse time scale in the theory corresponding to the frictionwhereAF=F;+F,_;—F; is the free energy change associ-
coefficient? ated with monomer loss. It remains to evaluate the growth
The thermodynamic, or equivalently statistical mechani-coefficient8;/_,, but this is not straightforward. In the ab-
cal treatment of cluster decay is based on the following desence of a better approach, the kinetic theory of collisions
tailed balance condition in the population dynamics of clus-between a monomer and a spherical cluster is often used to
ters described by Ed1): provide the estimat@/_, = (R?/V)(87kT/m)¥?, whereR s
B = yint, (12 tshe somewhat ill-definedi  1)-cluster radius, an¥ is the
ystem volume.
wheren{ is the population of clusters of sizeén thermody- We now have two expressions, Eq4l) and (15), for
namic equilibrium with a vapor, which for convenience we the cluster decay rate. These must be consistent with each
take to be a saturated vapor. To a good approximatthese  other, at least in some circumstances. The principal similarity
populations are given by is the presence in each of an exponential of, respectively, the

1

i
Zi=——| [ dr.dp.exp—H;/KT), (14)
ith3 J k=1

(a) (b)

P = P0) +%ma)2rz

T FIG. 1. In the Kramers problem, the escape of a particle
is considered for the type of potential showr(&, with
a locally harmonic well centered at=0 and a locally
AD harmonic barrier at=r,. For particle escape from a
cluster, the confining potential of mean force is more
<D=<I>(re)—lma)f(r—rz)2 like (b). The escape radius, is arbitrary, but can be
2 related to a typical position at which the cluster defini-
tion is violated.

«— . —>

F 3

7,

v
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depth of the potential of mean force, and the change in free ,
energy upon decay. We seek now to demonstrate that these |= Zf H dr,dp,dp; 5( 2 ret(ri+er,
quantities are related. k=2 k=2

5 k; pk) exp(—H; /kT), (20)

B. The potential of mean force in statistical . )
mechanics and make the transformation,—r,—er,/(i—1) for k

h hall foll | h | If H; is a function of spatial differences —r,) this
The strategy we shall follow is to evaluate the potenuaterm becomes

of mean force acting on a particle in the cluster using canoni-

cal statistical mechanics, and to see how it relates to cluster 1 () i i
free energies. |=zf [T dridpcdps 8| 2 r|dl 2 pe
. . k=2 k=1 k=1
Let us consider the mean radial force on a molecule at a
distancer, from the center of mass of a cluster iofmol- Xexp —Hj(rytery/(i—1))/kT), (21

ecules. Without loss of generality, let us fix the origin of

coordinates at the center of mass of the system, and also s‘gp'Ch may be expanded as

the total linear momentum to zero. The mean radial force is , i i
then given by the following phase space integral: = Z_eJ’ kH drdp,dp; 5(; rk) (5('(2 pk)
=2 =1 =1
1 i i € aH
f dr,dp,d ) —H, S —
(=55 f kH ricdpydpy & (kEl rk) (kil m) X expl H.(rl)/kT)<1 =Dk ml). (22
IH; Hence
X| — —|exp(—H;/KkT), (16)
_ I kT( )f H dr dpy dp; & 2 M
where the function 1

i i i oH;
’ Ik
s [ [ erconenud{ 31| 3oy o g[Sl
k=2 k=1 k=1

or more simply

xXexp(—H;/kT), a7
d¢ 1 i
when normalized is related to the equilibrium one-particle gy, ~ kT( )f(fl) &(rq), (24)
probability density, ) . .
which can be integrated to give
- ’ —i(P(ry)—P(0))
p(r) §(r)/ f &(rydry. (18) g(r1)=g(0)eXp< (i_ll)kT ) (25

By symmetry,¢ is a function of radius only. We proceed by thus establishing through E¢L8) a connection between the
considering its radial derivative potential of mean forc& and the equilibrium one-particle
density profile,

dé ;
Fra id(rq)
dry j H Aricdpicp 0 ( E rk) ( 2 pk) P(rl)“exr’( G —(1)1kT)' 29
«| - (7_H|> exp —H; /kT) This is the analogue of the particle probability densiyr)
dry ' in the Langevin problem, which is related to the potential of

i mean force according to E¢5). In Eq. (26) we see an ad-
J H drkdpkdpla ( (E fk)) ditional fa'ctor.ofi/(i—l). It appears because the mean force
on a particle in the cluster is created by the remainind
i particles with the added constraint that the center of mass of
u the entire system lies at the origin. If the first delta function
P> pk) exp(—H; /kT), (19 in Eq. (16) had not included in the sum, then the factor
i/(i—1) in Eg. (26) would not have arisen. Thus the fixed
assuming the integration limits do not dependrgn Fortu-  center of mass constraint is responsible for the difference
nately, the second term on the right-hand side of(E€f) can  between Egs.(5) and (26). As a check, consider a two
be simplified. We represent the derivative of the delta funcparticle system with interaction potentigi(r). When the
tion as the limit of E(S5ri+(ri+e)r)—8(Sar+(ry  radial displacement of particle 1 from the center of mass
—€)71))/2¢e as e—0, wherer, is a unit vector in the direc- is r,, the mean force isf(r;)=—¢'(2r;). The
tion of r,. Consider the integral potential of mean force is ®(ry)=—S"1f(r)dr
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=["¢'(2r)dr=(1/2)[*"1¢' (y)dy= ¢(2r,)/2. Hence p(r;)
cexp(—¢(2ry)/kT) in agreement with elementary expecta-
tions.

Now let us establish a connection betwegand a clus-
ter partition function. Let us consider

1
= | 21 sexn—piramicnep,

! ! f H dr, dp, d

e (i—1)ip3i-D ) iy Tk OPkEP

X exp — (Hy_ 1+ p2/2m)/KT), 27)
and then insert unit integrals/8(2}r,—R)dR and
J8(Zipx—P)dP into the right-hand side. Particle 1 intro-

duced here is assumed to lie far away from the other par-

ticles. Next make a transformation of coordina{egs—ry
—R/i,R—R} for k=1, and {py—px—P/i,P—P} for k
=1,i, for which the Jacobian is unity, giving

Zi—y J’ ( )
dr,dp.d re|dR
E (|—1)|h3' H kdpkdp, 6 E k
i
sl >, pk)dPexq—(Hi_ﬁpf/Zm
k=1
+ P?12mi?)/KT), (28
where N is the thermal de Broglie wavelength

=h/(27mkT)Y2. The particle positiong; are measured
with respect to the center of maRsi, and the momenta with
respect to the total momentum Now, if particle 1is very
distant from the remaining particles{; ;+ p1/2m~
Performing the integrals ovd® andP then gives

v 3 ot
(i—1)!h3<i—1>Ff klj:zdl'kdpkdpl

Zi—y
A

)exp(—Hi(rléoo)/kT),

(29
whereV is the system volume, or equivalently
B Vid
Zifl—mﬁ(w)- (30)
Therefore we have established the connection
h3(-(i—1)!
£(0) = VE exp(—F;_1/kT). (3D

Similarly, £(0) is related toF; . Equation(14) may be writ-
ten, using the same insertions and transformations,

f H dr, dp.d (2 rk)dRa(E pk)dP

(32

i il h3l
X exp( — (H;+ P?/2mi?)/kT),

which yields
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1 hdvi
ilh‘?’l f g(rl dr11

so thatf’g(rl)drlz(h%*l)i!>\3/Vi3)exp(—Fi/k1). How-
ever, ['&(rq)dr,=&(0)/p(0) from Eq.(18), so
h3(ifl)i|)\3

§(0)=P(0)T

exp(—F,; /KT). (34)

Hence from Eqs(25), (31), and (34) we can establish our
prime result

1 . —i(P()-P(0))
FEXF(_(Fi—l_Fi)/kT):m(o)eXF{ (i—1)kT '
(35
or equivalently
FimFioa=KTIN(ipy(0\%) — — A®,, (36)

where A®;=®d () —d(0). The subscripti on Ad; indi-
cates that the depth of the potential of mean force depends on
cluster size, and similarly the one-particle density at the cen-
ter of mass is-dependent, and hence the need for a subscript
on p(0).

The expression for the free energy change in &%)
makes perfect physical sense, particularly if we rewrite it in
the form

AF:F1+Fi_1_ A(D|_kT|n(|p|(0)V), (37)
with F4 KT In(V/A3). The left-hand side is the change in
free energy upon monomer evaporation from a cluster of size
i. The first term on the right-hand side may be written as a
sum of two terms ([ 1/(i—1)])A®;. The first termA ®;
is the reversible work done on a molecule by external forces
when it is slowly dragged out of arcluster, but work is also
done on the remaining molecules in order to keep the total
center of mass stationary. The total force on the remaining
molecules is equal and opposite to that on the single mol-
ecule, but the distance their center of mass moves-i$
times smaller. The free energy change will therefore include
this reversible work. This accounts for the second contribu-
tion to the sum. Furthermore, there is an entropic change in
free energy upon first identifying and holding one of the
component molecules of the cluster stationary at the center
of mass, and then releasing it from the position outside the
cluster to which it has been pulled. Considering the cluster
for the moment to be a bag of voluradi), the first change
is roughly kTIn(uv(i)/i) (the factor of 1V to account for the
choice in moleculkand the second is kT In V. We note that
v(i)~1/p(0) and therefore recover the last term on the
right-hand side of Eq(37).

Equation(35) is an exact relation between the depth of
the potential of mean force confining a molecule to a cluster,
and the difference in cluster free energy before and after the
loss of that molecule. It suggests a method for calculating
differences in free energy betweenand ( —1)-clusters by
evaluating the depth of the potential of mean force confining
particles to arni-cluster, together with the particle probability

Fi:_l
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density at the center of mass. It is an alternative to methodhe system is out of equilibrium. The prefactor in square
such as umbrella sampling, which has been applied to thibrackets is an approximation based on kinetic theory for the

very problent? collision rate of a monomer onto a spherical cluster of
We now combine Eq(37) with the detailed balance ex- radiusR.
pression(15) to get thei-cluster decay rate Equation (38) should be compared with Eqll), the
result from Langevin kinetics. First, though, we need to mul-
e | [ 87KT 12 ] —iAD; tiply the potential in Eq(11) by a factori/(i—1), to take
Y= T) R=lip(0)ex U—TI’) (38  account of the conk(ilrjtion of fixed center of mass, and we

must also multiplyy™" by i since any one of the confined
This result is based on the assumption that the decay rate jparticles might escape. We should also add subsadriptthe
a situation of detailed balance would apply for cases whenvell depth and the escape rate. We arrive at

ikTr2 exp(—iAD; /(i—1)kT)
My (feexpi(@(r)—®(re))/(i—DKT)dr)(fEr2exp(—i(P(r)—d(0))/(i—1)kT)dr) '

kin_

Yi

(39

The principal difference between Eq88) and(39) then lies  The reference population chosen here is that of the dimer
in the prefactors multiplying the exponential terms. Thisrather than the monomer singg(0) is zero. However, the
should not be a surprise since the Langevin equation apdimer population can be related to the monomer population
proach, and the friction coefficient which appears in Eg.throughn~—B,Vp?, whereB, is the second virial coeffi-
(39), is a phenomenological representation of the moleculacient of the vapor, defined through the equatipakT(p,
dynamics, and as we have just noted, the prefactor in the- szﬁ), with p and p, the vapor pressure and density, re-
thermodynamic escape rate is only approximate. The radii spectively. Equationf42) is therefore an expression for the
andRin each expression should take approximately the samequilibrium population ofi-clusters given in terms of quan-
value, but they might differ. The reliability of the two pref- tities readily determined from molecular dynamics studies of
actors may be judged by comparison with real escape rateslusters: densities at the center of mass and depths of poten-
which we shall address in the next section. tials of mean force. We do not need to calculate free energies

First, though, there are some interesting further connecexplicitly. We intend to explore Eq42) in future work.
tions to draw between the potential of mean force and cluster
properties. In thé— limit, F;—F;_4 is equal to the chemi-
cal potential of the condensate and hence the chemical pey. CALCULATING THE ESCAPE RATE
tential us=kTIn(pA/KT) of a saturated vapor, whegg, is  FROM MD SIMULATION
the saturated vapor pressure. If we employ B6), and use
ipi(0)=~p, in the limit of largei, wherep, is the density of
the condensate, then We have previously described microcanonical molecular
dynamics (MD) simulations of clusters of argon atorifs.
These were performed both to implement new ideas for a
realistic cluster definition and to compute cluster lifetimes
for a variety of sizes and energies. Our aim is now to calcu-
This is similar to the Clausius—Clapeyron equation, showingate the lifetime of these clusters indirectly by studying the
that Ad.. is related to the molecular latent heat of evaporasimulation trajectory and evaluating the cluster properties
tion. needed in the theoretical formulas described in the preceding

Another useful procedure is to construct the equilibriumsection. We shall also develop here a third, simplified proce-
populationnf of ani-cluster by repeated use of E@6). We  dure for estimating the lifetime, using a probabilistic ap-
write proach. These studies will demonstrate that the complex dy-

_ ) namical behavior of molecular clusters can be described in
Fi—F 1~ pu=Ad, - .I—ACI)i—I—kTh‘I(Ipi(O)), (41) tgrms qf a simple model, parametrized through detailed MD
-1 simulations.

Any scheme to estimate the lifetime must implement a
cluster definition. We consider that a particle becomes un-
bound when its kinetic energf becomes greater than the
modulus of its potential energy (i.e., total energy is posi-

i i tive), but only if the dynamics subsequently carry the particle
p(—ﬁ (Ad)m 1A<DJ)>

A. Cluster definition and molecular simulation

ACI)w:—kTIn(ﬁ

kT (40

so that through Eq(13),
nf=exp— (Fi—i ) /KT)
1 . .

2 far away from the cluster, avoiding recapture. Not all par-

1=3 ticles that acquire positive energy necessarily escape. This is
(42 illustrated in Fig. 2, which shows the total eneigy- U of a

i
P
=n$]| ——=ex
21'1:[3 1p;j(0)
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FIG. 2. The total energy and distance from center of mass of a particle near

the edge of a cluste_r, in a typical example. The vertical arrows indicate th%IG. 3. The average radial discrepancy force per unit mass on a particle in
three energy excursions. Only the last of these events leads to cluster decq}p{e cluster, plotted against particle radial velocity, obtained by analyzing the

dynamics on a time intervait=0.4 ps. The dotted line represents a fit to
the expected linear behavior. The slope is the negative of the friction coef-
particle near the edge of a cluster as a function of time. Onlyicient.

one of the three positive energy excursiasdicated by
arrows lead to decay, giving a recapture probabilig,

n 2/3 n this example. From counting the proportlgn of POSIand not Langevin dynamics then holds so there is no discrep-
tive energy excursions that lead to cluster decay in extenswgnCy force and the apparepigoes to zero. For largét, the

MbD sw(r)wullgt;ons,l the suc;:e;s fagg)FRc waos floungj to be _correlation between force discrepancy and velocity is lost in
al OhUt e fore usters of a O,Ut Iatcglms. nly a Ol‘;[\ ?peh“ﬁoise from the random force contribution. There is a regime
eight positive energy excursions leads to escape. '9NYetween these limits where the apparent friction coefficient is

proportion of particles escape when the clusters are Sma”eo{bout 2.5 ps, suggesting that Langevin dynamics is an ad-
and the surface curvature is greater, as would be expectedequate description for time scalét in the region of 0.4 ps.

_ A typical profile of potential of mean forcé(r) for a
B. Potential of mean force approach cluster of 50 argon atoms at2.98 kJ/mol per particléor
1. Langevin-derived prefactor aboutT~50.6 K*) is shown in Fig. 5. The profile for this
W he MD simulati lcul h . size is reasonably flat at the cluster center and then rises to a
€ can use the simulations to calculate the pOtentIaElateau. The one-particle density profile given by E§) is

of mean force, friction coefficient and temperature for use iy ofore approximately uniform out to a radius of about 6 A,
the theoretical expressions for the decay rate derived in thgnd then falls to zero, as shown in Fig. 6. This density profile
preceding sections. The potential of mean forbér) is '

found by averaging the force on a particle when at a radius
from the cluster center of mass. The temperaflref the

cluster is obtained by numerically fitting a Maxwell— 26
Boltzmann distribution to the particle velocity distributions 2.4 -
obtained from each trajectory. 22 |

The friction coefficient is found by mapping the actual
molecular dynamics onto the Langevin dynamics. The radial
component of the apparent acceleration of a partiele < 181
= (v(t+ 8t/2)— v(t— 8t/2))/4t for a given time intervaldt 8 6.
along the MD trajectory will not in general equal the radial =

2.0 1

component of the actual force on the particle at titri- 14

vided by the mass, due to the finite value&f We ascribe 1.2 1

the discrepancy to the sum of the friction force and the ran- 1.0 1

dom force in the Langevin E@2). It is clear then what to do: 0.8 A

we average the mean discrepancy force, and plot it agains g " y , g

particle velocity to extract the friction force element. 0.0 0.1 02 03 04 05
In Fig. 3 we give such a plot for an example dataset with 3t (ps)

6t=0.4ps, demonstrating the linear correlation between

friction force and velocity. The slope of the dotted line fit to FIG. 4. The apparent friction coefficient in the Langevin interpretation of

this behavior is our estimate far For different values oft the moIechar dynamlcs_, for a range of tlmest@ps_used in the evaIuaFlon
.. . ] .. _of the particle acceleration. The expected behavior at large and #niall

a similar correlation is found, and the slope of the linear fit iSseen, and the plateau region centered at a®oet0.3 ps represents the

shown againsbt in Fig. 4. For 5t—0 molecular dynamics optimal value of the friction coefficieng.
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) FIG. 7. Mean lifetimes of argon clusters of various sizes and at a range of
FIG. 5. The potentlal of mean force for a 50 atom argon (_:IusteTI' at. total energies, calculated using the kinetic approach of B8 (open
~50.6 K, obtained from averages of the mean force as a function of radiugjrcleg and measured directly by MD simulatidfilled circles.
derived from MD simulation.

energy. We have previously demonstrated that a geometric

is reminiscent of the density profiles calculated in densitycjyster definition with an energy-independent Stillinger ra-
functional treatments of cluster structdre. dius cannot account for the observed cluster stabifffies.

Now we can calculate the kinetic decay rate using EqTherefore, deviations are therefore to be expected.
(11). The results are shown in Fig. 7. We employ escape radii  we can simplify the model so that only the depth of the
re of 11, 12, 14.5, and 17 A foi=10, 25, 50, and 100, well and not its shape enters the theoretical expression. We
respectively. These are estimates of the radii at which thean parametrize of the model to fit to the data. If we assume
potential of mean force first reaches zero for each clustefhe potential of mean force is a square well with desth;
size, averaged over cluster energy. The condition for particlgnd radiusRg, then Eq.(39) reduces to
escape is therefore that the particle is able to reach the top of
the free energy barrier, though this is a very rough treatment ;, 3ir kT
of a compllcate_d problem. The idea is illustrated in F|g. 5 for 7 myRﬁ(l—(RS/re))
the case of the=>50 cluster at—2.98 kJ/mol per particle. )
The escape radius, is in the region of the 14.5 A quoted. If A®;>KT. We can estimate the range of the square ®ell
Plots for different energies show slightly different escapeUSing the one-particle profilp(r) and the escape radius
positions (colder ones are more compacand rather than takes a position about one Lennard-Joads-3.4 A) beyond
complicate the model by using an energy dependent value 5h|s_. Reasonable_ choices of the rgprgsentgtlve radii for the
ro, we choose a value dependent only on cluster size. varlous_cluster sizes can produce lifetimes in as good_ agree-

An energy-independent escape radius is equivalent taw_ent with th_e dlre_ctly observed data as the lifetimes given in
imposing a cluster definition that requires particles to lieFig- 7. Working with Eq.(43) has some advantages over Eq.
within a given distance of the center of mass, irrespective of11) since the required input is easier to determine.

exp(—iAD /(i—1)kT), (43

2. Detailed balance-derived prefactor

0.0006 An alternative approach to estimating the decay rate is to
0.0005 employ Eq.(38), based on detailed balance and thermody-
- namics. This time we need to estimate the radius a shell
"’;< 0.0004 1 defining the capture cross section of the cluster. Symmetry
= would suggest that we should estim&#éy determining the
& 0.0003 - radius at which the particle escape is most likely. This radius
%‘ is obtained for each cluster size using the probabilistic
S 0.0002 - method described in the following section. This gives cap-
© ture radiiR of 8, 10, 11, and 12 A for=10, 25, 50, and 100,
0.0001 1 respectively, as illustrated for=50 in Fig. 9e).
0.0000 We need estimates of the one-particle density at the ori-

' ‘ ' ' ' ' ' ' gin p(0) in order to use Eq(38). For example, Fig. 6 sug-
0 g : o
2 . 4 6 8 10 12 14 16 18 gests a value of 5010 % A~3 for thei =50 cluster. Similar
Distance from center of mass (A) analyses of data can provigg0) for all cluster sizes and
FIG. 6. The one particle density profitgr) for the 50 atom argon cluster at e_ne_rgles in-our S_Imu!atlons' We can Fhen calculate th_e mean
an energy of—2.98 kJ mol* per particle {~50.6 K), obtained from MD I'f_e“mes shown in Fig. 8-_ OI_’]CG again, agreement W|t_h th?
simulation. directly observed mean lifetimes is reasonable, bearing in
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2500 mate to be a typical molecular separati#ti*® divided by a
=50 typical thermal velocity kT/m)*?, and if we estimate the
2000 central one-particle density to g0)~R ™2 then the pref-
@ actor in (38) reduces to (&)Y%kTi?¥(myR?), showing
Tg’ 1500 =05 clear similarities to the prefactor in E¢3).
2 10001 1100 i=10
c C. Probabilistic approach
T 500 A
S \“ \‘H The value of MD simulation is that a wealth of informa-
0 - tion is available about the system under consideration. We
have already exploited this in fixing the parameters for the

; ' - . kinetic and thermodynamic treatments. But we can go further
40 35 30 25 20 415 -0 and develop a third, probabilistic approach to estimate the
Energy per particle (kJ/mol) cluster decay rate. It turns out that this approach reproduces

the observed decay rates as well as if not better than the

FIG. 8. Mean lifetimes of argon clusters of various sizes and at a range oépproaches described in the preceding section. and involves
total energies, calculated using the thermodynamic approach of3Bjp. !

(open circles and measured by MD simulatidfilled circles. fewer aSSl_JmptiO_nS. _ _
The simulation trajectories are used to calculate the

probability density P(r)=4mr?p(r) for a particle to be
mind the estimation oR. ChoosingR on a different basis found at a particular distanaefrom the center of mass. An
might improve the fit. The error in the predicted values isexample is shown in Fig.(8). Similarly, the means and vari-
energy dependent, which is consistent with our previous conances of the single particle kinetic and potential enerifies
clusions that a geometric cluster definition cannot reproducé@ndU, respectively, can be obtained as a functiorr.ofhe
the correct energy dependence of decay rates. distribution of the potential energy of a particle at a given
We note that the prefactors in Eq88) and (43) have radiusr is approximately Gaussian. The mean potential en-
similar structure. Ify~! is a relaxation time, which we esti- ergy U(r) as a function ofr is shown in Fig. %). Note

0.25

(a) (b)

0.20
0.18

0.10
10 FIG. 9. These plots illustrate the probabilistic method
for estimating escape probabilify.s.. In (a) the one-
particle probability density(r) is shown as a function
of distance from the center of mass. The data shown is
for the 50 particle cluster at an energy 6f2.98
kJ mol'! (Ref. 24. In (b) we show the mean potential
energy well created by this 50 particle cluster(d¢j we
give, on the left, the normalized probability distribu-
tions for the potential energy (full line) and the ki-

08 l" netic energyK (dashed ling at r=12 A. For conve-

I

Prabability density P(r)

0.05

Mean potential energy (kJ/mol)

0.00 T -14 ——
0 5 10 15 20 0 2 4 8 8 10 12 14 16 18 20

Distance from center of mass r(A) Distance from center of mass r (&)

| (c) nience, the observed Maxwell-Boltzmann kinetic
08 | energy distribution is approximated by a Gaussian, as
| shown. The normalized probability distribution for the
04 \ total energy, shown on the right, is obtained by combin-
\ ing these two distributions. Integrating this distribution
\ for positive energies gives the probability that>|U|
00 VA RN for this value ofr. The derived probability that a par-
6 -4 2 0 2 4 6 6 -4 -2 o 2 4 6 ticle has positive energy at a given positiois shown
Energy (kJimol) Energy (kdimol) in (d), again for a 50 particle cluster at an energy of
—2.98 kJ mol! particle X. The probability density that
a particle at positiomr has positive energy is then the
product of the distributions ite) and(d). Two cases are
shown in(e), for 50 particle clusters at temperatures of
T=50.6 K (full line) andT=55.4 K (dashed ling The
probability that a particle should acquire positive en-
ergy Pyos is then the area under these curves.

Probability density

02

1 (@

0.6
04

0.2

Probabilitity that K>]U]

0.0

0 5 10 15 20 25

Distance from center of mass r (A) Distance from center of mass r(A)

a 5 10 15 20

Probability that a particle is at rand has K>|U]
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however that it is the potential of mean fordgr) and not 0.008
U(r) that is responsible for the binding, and one should con-
trast the shapes a@f and® in Fig. 5.

Let us now calculate how often particles violate our % 0.006
cluster definition. First, they must acquire a total energy §
greater than zero. The probabili§(K>|U|;r) that a par- = 0.004 |
ticle hask >|U| at a giverr can be calculated by combining E
the kinetic and potential energy probability distributions as §
shown schematically in Fig.(), and integrating over the & 4ggs |

states whose total energy is positive. For convenience, we

make the approximation that the kinetic energy distribution

can be treated as a Gaussian. The total energy distributior g.ag0 i .
can then be characterized by adding the means of the indi- 0 100 200 300 400 500
vidual distributions and their variances in quadrature. This
simplification only introduces a small error since it is the
larger variance of the potential energy which dominates th&IG. 10. The velocity distribution for the escaping atoms at the instant of
combined energy distribution. The resulting probability pro-cluster decaydashed linecompared with that for particles bound within the

: . ; ; ; luster (dotted ling. The data shown is for a 50 particle cluster &t
> ) - :
file P(K |U|,I‘), is shown in Fig ). As would be ex ~50.6 K. The particles that escape are colder than the average: they have

pected, if a particle is close to the top of the well then ther€jen up kinetic energy in favor of potential energy as the bonds with their
is a good probability that its total energy will be positive. neighbors are loosened. The energy distribution of the escaped particles
Converse|y, partic|es very close to the center of mass W||yvhen fgr from the cluster is shown as a solid line. It clearly does not take the
always be energetically bound. The probability density that £941iPrium shape.

particle will be found at position with positive energy is

then obtained by multiplyingP(r) by P(K>|UJ;r). The

probability P, that a particle in the cluster possesses posi-

tive energy is then given by integrating the resulting distri-for r near the edge of the cluster that is relevant to the escape
bution overr as shown in Fig. @). The probability that it process. The decay rate of a cluster of siethen given by
might then escape iB,o{1—R;).

A correction must then be made to account for the fact Pood1-Ry)
that the probability density functioR(r) acquired from the yprob= P2
MD is depleted by the exclusion of configurations corre- Tedgd 1) Re
sponding to decay events, since the trajectories are post- o ) ) )
processed to remove unbound states as described in Ref. 24. Figure 11 shows the mean lifetimes obtained using this
Therefore, we only see the positive energy excursions that dgrobamllstm scheme for a range of cluster sizes and energies.
not lead to decay: in Fig. 2 the excursion leading to escap&here is clearly an excellent agreement with the results ob-
would be ignored and we would count only two events in-tained previousl§# through direct simulation. The probabi-
stead of three. The actual number of such events should BiStic; single particle model of the cluster dynamics therefore
obtained from the apparent number by renormalization by ®rovides a very good representation of the complex many:-
factor of 1R, , or about 1/0.781.28 for the 50-cluster. This P0dy problem.
method also provides the velocity distribution for the escap-
ing atoms at the instant of decay and when they have com-
pletely separated from the cluster, as shown in Fig. 10.

It remains to determine a time scatdor the decay rate, 1400

Velocity (m s™1)

(44)

or equivalently an attempt rate for escape. We have seen 1200 =50
that this time scale is provided in the kinetic approach by the

Langevin friction coefficient; in the thermodynamic ap- 1000

proach by a capture rate of monomers by a cluster, together 800 1205

Cluster Lifetime (ps)
3
o

with a detailed balance condition, and in other ways in other =10
treatments® We estimate the time scale from our MD simu- =100

lations in the following way. Encounters with neighboring 400 1

particles cause fluctuations in the energy of a particle. These 200 | X%

fluctuations drive the slower diffusion of the particle’s posi-

tion within the potential well, but are also the driving force
behind the excursion of a particle into a positive energy state.
We regard the energy fluctuation time scale as the inverse of _
the frequency of attempts to achieve positive energy. The Energy per particle (kJ/moli)

time ScaIeT(r) is therefore obtained by CaICU|atlng the aver- FIG. 11. A comparison of the cluster lifetimes calculated using the proba-

age time for the t(?tal energy of a p_ar_tiCle to_ pass through itgjjistic method(open circleswith those measured from the MD simulations
mean value at a given value gfand it is the time scaleggge  (filled circles.

-40 35 30 -25 20 15 -1.0
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V. CONCLUSIONS from the fluctuation behavior of single particle energies. Ul-
timately, it is a comparison with the decay rates determined

In this paper we have developed two statistical models . ) . . -
py microscopic molecular simulation that test the validity of

one based on stochastic kinetics and the other on probabil h of th h
ties, to account for the observed rates of decay of simplt?ac_”?. ese agprosct €s. Kinet dth q .
molecular clusters. The stochastic kinetics approach is based IS connection between KInelic and thermodynamic ap-

on a representation of single molecule motion using a I_(,jmger_)roaches reveals potential points of departure too. The solu-

vin equation of motion, and the probabilistic model uses datdions to _th_e Lang_evm equation we e”."p"?y are valid in the
inetrong friction regime. How does the kinetic decay rate com-

the statistics of how often molecules violate the imposeq:)akre V_V'tth a free energyf d |Iferinlc etr\:\'l he_r: pr:x_rtlcltihmert“a IS
cluster definition and leave. aken into accouniweak friction? In this situation, the rela-

These statistical models enable us to view the evaporeﬂvely slow collision rate between particles within the cluster

tion of a molecule from a quasibound many-body system ahay mean that the full range of microcanonical states is not

a single particle escape problem. Both the kinetic and th(gxplored over the time scale of cluster decay. Similarly, sys-

probabilistic models can reproduce the measured cluster Iifet-emS that are slow to equilibrate after cluster growth may not

times to a high degree of accuracy. This suggests that [ylly explore conformational space before a subsequent

should be possible to develop methods to obtain decay rat onomer coII|S|on_ occurs, so that the current state of the
for clusters that are so long lived that their lifetime would be® uster(and hence its deca_y rafdaecomes cou_pled t_o cluster
impossible to measure directly. The accuracy of the method rowth. In both of these situations, the relationship betw_een
in predicting cluster lifetimes for such systems will dependt e free energy and the decay rate becomes less obvious.
upon the amount of data available for use in the analysis. I|:|— T . .
particular, it is necessary to generate some nearly unbourfy’®en the kinetics and thermodynamics of cluster decay is
configurations in order to determine the depths of the poten)-/et to be explored.

tial energy well and the potential of mean force. Simulation

data where molecules are extracted slowly from the cluster

by an external force, or allowed to drift towards the cluster"CKNOWLEDGMENT
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