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Thermodynamics of attractive hard rods: A test of mean field density
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Mean field density functional theoffyIFDFT) has been employed to calculate the free energy of a

pair of attractive hard rods on a ring. The results for homogeneous and optimal inhomogeneous
density profiles have been compared with the exact free energy as a test of the approach. We discuss
the problems in applying MFDFT to small systems and suggest modifications which allow a
reasonably accurate treatment of this particular, rather extreme, ca200&American Institute of
Physics. [DOI: 10.1063/1.1782371

I. INTRODUCTION relatively little work on validating MFDFT against other ap-
) ~_ proaches. This is perhaps due to the lack of suitable cases in
Although the gaseous state of matter is formed primarilygiatistical physics where analytical solution is possible. Nu-
from independently moving molecules, solidlike and liquid- yarical work on more microscopic scales is difficult, as
like molecular clusters are present as well. These are delicalfiantioned earlier. One of the few such studies is the recent
s_tructures, Changing size frequently_by processes of evaporg: by Regueraet al,22 where MFDFT is compared with
tion and condensation. They are of interest because they Cqil, e carlo calculations for clusters of 80 argon atoms, with

tell us a great deal about the forces which are responsible foa di . f . . . .
. " the diff d t fil d i
the cohesion of traditional bulk condensed matter. They be- ISCUSSION OF the difierences In density protiles and system

. . ressures.
come particularly important when the pressure exceeds th% . .
In this study we consider a case where the exact free
saturated vapor pressure and the gas becomes metastable. It . . . .
. . energy is available for comparison with MFDFT calcula-
is through the formation and growth of molecular clusters . . .
; . tions. The reference calculations are easy since we consider a
that a supersaturated gas, with a pressure higher than the . .
small number of molecules. On the other hand, this requires

saturated vapor pressure, makes its transition to the more i d fullv. si th feat f standard
stable condensed phase. The properties of clusters therefofg 0 Proceed careiully, since there are features ot standar
DFT which are inconsistent when applied to systems con-

fundamentally control the process of nucleation of droplett . " b ¢ lecules. We shall : q
or crystals from a vapor phasg. aining small numbers of molecules. We shall explore an

Interest in this process has driven efforts to calculate thgomment on a number of these matters.

thermodynamic properties of small molecular clusters. The /S IS suggested by its name, MFDFT is a mean field
principal property of interest in droplet nucleation is the free@PProach, whereby thisually pairwisg molecular interac-

energy of formation of a cluster from its separated constituiONS are represented to a first approximation by an effective

ents, but major difficulties are encountered in computing th&Xternal field; a potential well that confines the molecules to
entropic contribution to the free energy. Molecular simula-2 Certain spatial regioff Such an approach might be inac-
tion provides the most direct approach, using Monte Carlo ofuraté for small systems. This is exacerbated by a second
molecular dynamics techniques, together with thermody&SSumption, the random phase approximation, according to
namic integration or grand canonical umbrella sampling tgvhich contributions to the free energy from correlations in
evaluate free energy differenc&d! However, for large clus- molecular positions are ignored. Standard MFDFT also tends
ters such methods become very time consuming, and altef0 Overcount the pairwise interaction energy by overestimat-
natives on a coarser level of description have been deveild the two-particle distribution function. A final problem is
oped. that the confinement of the molecules in the effective poten-
The main method available in this coarse grained cattial leads to an underestimate of the system entropy: the mol-
egory is (classical mean field density functional theory ecules are in fact free to move anywhere within the system
(MFDFT). This approach has been used to study moleculand not only within the range of the effective potentfathis
clusters for nearly 20 yeafé-'" It is relatively simple to requires what is called the translational correction. All of
implement and it provides useful insight into cluster thermo-these approximations are questionable, and some of them are
dynamics. It incorporates important features absent fronparticularly so when the number of molecules in the system
simpler descriptions, such as the capillarity model and itds small.
derivativest'8~2°When used to calculate droplet nucleation ~ We have studied a very simple system to see how these
rates, it occupies the middle ground between the classicapproximations affect the accuracy of free energies calcu-
theory of nucleatioff and theories based on molecular simu-lated by MFDFT, and how the difficulties might be over-
lation. come. We have actually chosen a system where the problems
In spite of this frequent usage, however, there has beeshould be most severe: a one-dimensional system containing
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just two interacting hard rods. There have been few otheate the excess free energy for two interacting rods as a func-
attempts to develop a MFDFT for small systefidn the tion of the sizeR of the system in which they reside.
following sections we show how MFDFT calculations of the

free energy of this system compare with exact values. We

illustrate some .o_f the difficulties in t_he standard theory, but”l' MEAN FIELD DENSITY FUNCTIONAL THEORY

show how modifications of the functional allow a reasonable

accuracy to be achieved. These modifications should prov&- The standard free energy functional

useful in more complicated systems as well. We evaluate the  at the core of MFDFT applied to fluids is the separation

exact free energy in Sec. Il, develop a MFDFT in Sec. lll,of the attractive and repulsive interactions. To make the
and discuss results in Sec. IV, finally reaching some conclupoplem tractable, the repulsive interactions are dealt with in

sions in Sec. V. the hard spheréor in this one-dimensional case hard yod
approximation. The attractions are regarded as a perturbation
Il. EXACT FREE ENERGY on the hard sphere system. Next, a mean field approximation

We consider two hard rods each of lengttand free to IS employed which introduces an external effective single
move on a line of lengttR, with periodic boundary condi- particle potentialV(r), tailored to mimic the effect of the
tions. The rods interact through a pair potentt,,) where ~ pairwise attractive interactions. In order to do this, the
r,,is the separation of the rod centers. The partition functiorHamiltonian of the system is writtéhas

s H=K+Ho+H,, (5)
1,(R R hereK is the kinetic energy part of the Hamiltonian aidg
Z== Zf drfdre —U(r,r,)/KT], 1) ~ Wherexisthe k 9y p
27 Jo 7)o T2 XL =0, r2)/kT] @ is the Hamiltonian,

where y=(27mmkT)¥%h is the inverse thermal de Broglie N

wavelength (n is the rod mass ankl is Planck’s constatk Ho= Z Ug(ri— fj)fZ V(ry), (6)

is Boltzmann’s constanf, is the temperature, arld(r,,r,) i =

is the potential energy of the system,andr, are the posi- WhereUg is the hard sphere repulsive interaction potential.
tions of the centers of the rode.(r,,r,) can be separated The angled brackets signify all pairs of particles. The Hamil-
into an attractive potentiap(r,—r,) and a hard sphere re- tonian K+H, describes a reference system Wf hard
pulsive potentialUg(r,—r5,). Due to the periodic boundary spheres(or rods in a single particle(mean field potential
conditions, the rods interact with each other and with peri-V(r). Hy is

odic images. We assume a fordi(r)= — a exp(—Ar) and, N
for simplicity, we limit the range of this potential so that Hy=> d’(ri_rj)_E V(ry), (7)
there are only two terms in the exponent: an interaction be- (i) i=1

tween rod 1 and rod 2, and between rod 1 and the closegfhere ¢(r) is the attractive interaction potential. This con-
periodic image of rod 2. Further contributions to the interac+ibytion is treated as a perturbation of the reference system
tion energy are neglected. We consider a short range repyly order to estimate the free energy. The exponential exp
sive potentialUg(r, —r,) taking the form of a hard sphere (_H, /kT) is expanded to first order. The mean field free

UR(I’l—I’z):O When|l’l—r2|>b, '}’N N
~_ L a—Ho/KT/q _
Un(fi—t,)= when [r1—r,|<b. ) Fue~—KTIng, iljldr,e o/kT(1—H, /KT)
; i ; 2
This reduces the partition function &= y*R1/2 where =Fo—KTIn(1—=(H)q/kT)=~Fo+(H1)g, 8
R=b a whereF,= —KkTIn Z, is the free energy of the reference sys-

= dr, exp —=exp(—Ar 0 ay Yy

f 2 X‘{ kT XQ 2) tem, withZy=[ yN[TIdr; exp(—Hy/KT)/N!]. The second term

is the average perturbative energy estimated using the prob-
n iexq—)\[R— rz)])_ ) gbility d.istribution of states i_n th.e reference system. Spatial
kT integrations are over the entire ring. The free energy depends

The free energy i =—kTInZ, but for convenience we ©N the choice made for the mean field potentiét). How-

focus on an excess free energy, obtained by subtracting tHYer, the average of(r) cancels out between the two con-
free energy of two noninteracting point particles: tributions in Eq.(8), allowing the free energy to be rewritten

as
S i /2) KTIn(R/T) 4)
=F—Fjq=—KkT|In-5=5-| =kTIn :
& . YR2 FMF:Fh+<<Z> ¢(ri_rj)> , 9
1] 0

The integrall can be calculated numerically once the param-
eters are specified. For convenience, we shall later on reprevhere Fy, is the free energy of the reference system minus
sent distanceR, r,, b, and\ as dimensionless multiples of the contribution due to the mean field potential, and the sec-
some length scalR,. We also express energiesandF.,in  ond term is the average of the pairwise attractive interactions
terms of the energy scaleTl. It is therefore simple to evalu- in the ensemble of the reference system.
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The mean field potentidf(r) appears neither in the full R
Hamiltonian in Eq.(5) nor explicitly in the free energ§ e Fn= fo flp(r)]dr
given by Eq.(9). The dependence ovi(r) is hidden in the
weighting of configurations in thé---), averages and in R p(r) 1
Fp,. The main purpose d¥(r) is to mimic the effect of the f kTp(r)l ( Y [2(1=bp( )™ (13

attractive interactions. This approximation is best when the

perturbative contribution to Eq8) is small. This can be This is the intrinsic free energy of the system with Hamil-

achieved by choosing/(r) to minimize the free energy tonianH,, that is to say, the contribution due to the interac-

Fue. The Bogoliubov inequality ensures that the free energytions between the rods and the mean field has been sub-

calculated in this way will not lie below the true free energytracted. It is clearly a functional q¥(r).

of the system with Hamiltoniafi .24 The second term in Eq9) is the average attractive en-
We can develop the theory now in terms of particle den-ergy evaluated in the probability distribution of statesig,

sity profiles: a density functional approach. Both terms orwhich can be written in the forff

the right-hand side of Eq9) may be regarded as functionals

of the reference system single particle distribution functlon<2 (ri— rj)> :EJ'RdrfRdr'P(Z)(r'r')‘f’(r_r')’
or density profilep(r), defined by i o 290 Jo

(14
N
n=(3 5(r-—r) wherep®(r,r’) is the two-particle distribution function of
PR=A : hard rods in the reference system. The standard DFT treat-

ment of this contribution involves a further simplification:

N N the random phase approximati@RPA), according to which
“ZNT H dr;exp —Ho/kT)8(r;—r). (10 ,
p@(r,r")=p(r)p(r'), (15

This is itself a functional of the mean field potenti&lr), so and the final expression fdfpr is then
the minimization of the free energy, now writt€per, may R p(r) 1
be taken to be with respect to this density profile. This was FDFT:J' drkTp(r)In( 5y [2(1=bp(r)]P
the key observation made by Barrett in his interpretation of 0 P
the standard density functional approaéh. 1 (R (R
Let us now develop a density functional representation + Efo drfo drop(r)p(r’)ye(r—r’). (16
of the free energy gy for the two-rod system. The terfa,
is the intrinsic free energy of an inhomogeneous fluid ofThe free energy is now explicitly a functional of the refer-
nonattractive hard rods. Perétié® developed an analytical ence system one-particle density profilér). Minimizing
functional for this, which is exact for the case when theEq. (16) with respect top(r) is equivalent to choosing the
number of particlesN is large. It will be shown that this V(r) which best mimics the attractive interactions.
treatment breaks down for the case winer 2. For the pur- The optimalV(r) can be reconstructed from the optimal
poses of this study we employ the local density approximaédensity profile if required, though there are difficulties which
tion (LDA), since this is the standard practice for developingwe shall discuss shortly.
MFDFT in higher dimensions, where exact solutions are not The minimization is achieved by solving the Euler-
available. Lagrange equation associated with E6), incorporating
The first step is to find an expression for the free energyhe normalization constrainfpdr=2 through a Lagrange
of a homogeneous system of hard rods. In the notation of thenultiplier A:
preceding section, the exact free energy of two noninteract-

ing hard rods isF,= —kTIn[y”R(R—2b)/2]. The homoge- Mh[P(r)]:A_f p(r"Y(r—r")dr’, (17)
neous one-particle density js=2/R so we can rewrite this
as where
2 1 h[p(r)]
- il prlp(r)]=————
Fn 2kTIn<yR [2(1=2b/R)] ™2 ) (11
_ p(r)
and extract the free energy density =kT}In y{2[1—Dbp(r) ]}
bp(r)
1 P
fh—F /IR= kTp In( W) (12) +1+ 2[l—bp(r)] ' (18)

The free energy of the system is then obtained by substitut-
The next step is to write the free energy in the local densitying this profile into the original free energy functional. This
approximation as a functional of a spatially varying, refer-completes our development of standard MFDFT for this
ence system one-particle densitfr): problem.
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At this point we can compare the intrinsic chemical po-resulting profile to be spatially varying. This is just a conse-
tential of the hard rod fluigk,, to that obtained by Percd8. quence of the spatial dependence of the mean field potential
V(r) present in the reference system Hamiltonian. On the

whlp(H)1/kT=In rfb(r) — other hand, the single-particle density profilg in the real
1=J: Pp(r')dr (not the referengesystem is given by
r r')dr’
+f ’:(H) s (19
1T =2 [ 1] o
Settingp(r) to a constanp, this equals
b xXexd —(Ho+H)/KT]S8(r{—r), (21
i pl/KT=In ﬁ 4 %. (20
p p whereZ is the exact partition function. Due to the transla-

The difference between this and Hd8) with p(r)=p and  tional symmetry of the Hamiltoniai =K+Hg+H;, this

y=1 arises because the Percus formula was derived in therofile should be uniform. The reference density prgfi(e)

thermodynamic limit. can be considered as the zeroth-order approximation to
Note that in calculations in nucleation theory, the granden(r) in an expansion irH;. To check the validity of this

potential() is often required, in which case the constAnin  approach, higher order contributionsdq can be computed

the above equation is the fixed external chemical potentiaky expanding the exp{H,/KkT) factor in Eq.(21). For ex-

and Q =Fper— AN with N now equal to the mean number ample the first-order density profile is given by

of molecules in the system for a given chemical potential.

For our closed system, the chemical potentiais adjusted NS driexp(—Ho/KT)(1—Hq/KT)8(r —r,)

to ensure that the number of particles present is equal to 201(1)= fH T dr, exp(—Ho/KT)(1—H, /KT)

: I (22
B. Higher order contributionsto  p

It is worth reflecting briefly on the density profile that This can be calculated approximately, using the random
emerges from the above procedure. It is quite natural for thphase approximation and the zero-order density prpfit¢:

p(r)|1— %(N—l)(N—Z)N’ZI1+(N—1)N’1I2—(N—1)N’1fdr’¢)(r—r’)p(r’)/kT+V(r)/kT
pl(r)% 1 ! (23)
1—§(N—1)N’1|1+I2

where (N—-1) 1 (N—-1)
pa(r)=~p(r) 1_T|1_N|2_ N
I1=f dr'dr”¢(r'—=r")p(r")p(r")/KT (24)
xf dr'¢(r—r")p(r')/kT—Inp (26)
and

in which I, is now the integral in Eq(25) with V(r) re-
|2:f dr'V(r")p(r")/KT. (29  placed by—kTInp.

This result is still spatially varying. Indeed any expan-
One problem here is that the mean figlfr) appears explic- sion of Eq.(21) to finite order, and employing approxima-
itly in Eq. (23). The inversion of the zeroth-order profile tions to calculate the corrections, will lead to a density pro-
p(r) to give V(r) is tedious and also incomplete, since thefile with spatial variation. The loss of translational symmetry
mean field is necessarily uncertain up to a constant. Thiss caused fundamentally by the need to choose an arbitrary
difficulty does not occur in earlier expressions such as Eglocation in space for the center of the mean field potential
(16), where the role played by the mean field is hidden.well. By choosing a particular location and using the zeroth-
However, we may proceed using an approximation\for) order term, we obtain an inhomogeneous reference system
obtained by neglecting the hard sphere repulsions, namelgingle-particle density profile(r). This is the interpretation
V(r)=~—KkTIn p(r)+C whereC is the arbitrary constant. Itis by Barrett!® The breakage of translational symmetry, how-
possible to fix this constant by demanding that the perturbaever, is associated with an undesirable error in the free en-
tive second term in Eq8), evaluated using the approximate ergy. The MFDFT approach should be amended to take this
V(r), should vanish. Once this is imposed, the first-ordereffect into account, and we shall address this point later on.
density profile reduces to It is also worth pointing out that the Euler-Lagrange
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equation(17) generates profiles correspondingstationary  D. Modifications

values of the free energy or grand potential. Saddle point

solutions are produced as well as stable global minima, and

in nucleation applications, the metastable solutions are ident- Small N effects

tified with critical clusters: the growth or evaporation of In applying MFDFT to small systems, several crucial
which are equally likely. The objection has been made thapggifications to the standard development should not be
saddle point solutions are irrelevant. For given external congyerlooked. These modifications are necessary to take ac-
ditions (say temperature and chemical potentiaie system  count of finite size effects that become increasingly impor-
has a unique free energy and grand potential, and it is onlyant a5 the number of particles becomes small.

the minimized free energy from the MFDFT approach that  The first two corrections take us back to the RPA in Eq.

can be taken as an approximation to the free energy of afys) The correct relationship between the two-particle dis-
actual system. To counter this objection, it was shown byipytion function p(r,r’) and a product of two single-

Talanquer and OxtoBf that the metastable solutions in an particle distribution functiong(r)p(r’) is given by

open systenifixed chemical potentialmap onto stable so- @) ot , )

lutions of a closed systertwith fixed N), and so the use of pt(r,r")=g(r,r")p(r)p(r’), (28)
MFDFT might t_hereby be justified. It is necessary, howeverwhereg(r,r’) is the pair correlation function. In the RPA
to make a choice of the volume for the closed system, anghjs function is set to unity irrespective of the positionand
this may be thought to correspond to a cluster definition. The r \ve will make corrections to this approximation in several

need to define a cluster in terms of a regionNoparticle  giages. The first correction results from consideration of the

phase space is a common feature in microscopic statisticlormalization conditiof for ann-particle distribution func-
mechanical models, but in contrast to other approacheggn-

MFDFT appears to be free of the necessity to do likewise.

This is not the case, for the reasons just outlined. Further- RO - N!

more, the cluster definitions available in MFDFT seem lim- fo |1:[1 drip™({rit) = EIR (29)

ited to the imposition of a confining volume, rather than

something more physical, such as conditions involving bindFor the case oh=2 (the two-particle distribution function
ing energy’® the right-hand side of Eq29) is equal toN(N—1). On the

other hand, the one-particle distribution functions are nor-
malized toN, giving N2 for the integral of the product
p(r)p(r"). Therefore the RPA approximatiog=1 should

be replaced by the more accurate fogw (N—1)/N, and

There is a standard iterative approach to solving the inEq. (15) becomes
tegral equatior(17) for p(r). A trial profile is inserted into N—1
the right-hand side, and a new profile is generated by invert-  p(3)(r r")~ Tp(r)p(r’). (30)
ing the functionuy(p). For a fixedA this procedure leads
ultimately to a free energy minimizing profile, but if the |t is clear that this correction is only important for sml)
initial profile is chosen suitably, then a metastable saddlgut in the case oN=2 it introduces a substantial correction
point solution may emerge and remain little changed forfactor of 1/2. We have employed this correct normalization
many iterations. in the derivation of Eq(23) alreadly.

This is not the procedure we use, largely because in A second modification of Eq15) addresses the neglect
practice we found that for small systems the metastable statgithin the RPA of spatial correlations between the two rods.
is not readily observable. Instead we effectively updatat  Associated terms have have been ignored in the perturbative
each iteration with the intention of ensuring the desired norcontribution to the free energysffdrf&dr’ p@(r,r'") p(r
malization conditionf pdr=2. We alter the Euler-Lagrange —r’). The most severe consequence of this is that the RPA
equation to fails to remove the attractive energy due to overlapping con-

figurations of rods, i.e., whefr —r’|<b. This leads to a
1 substantial overestimation of the magnitude of the cohesive
Halp(r)]=— kT'”(E fdr exf(— tnc— Per)/ KT]| = e, energy in the system. An approximate way to take account of
(27) this is to construct a correlation function from a pair of step
functions

where  ¢er(r)=/p(r')p(r—r)dr’ and  up ()= un g(r,r")=0(r—r'|—=b)O(R—|r—r'|—b), (31)
—KkTIn(p/v). This revised equation is equivalent to that em- i ) )
ployed by Lee, da Gama, and GubbtAsnd Talanquer and Where©(z)=0 for z<0 and unity otherwise. Now(r,r’)
Oxtoby* to control the normalization for closed systems. S €xplicitly zero for overlapping hard rod configurations,
The first term on the left-hand side of E@7) is nothing ~2nd Eq.(15) is modified to

more than the appropriate value &fappearing in Eq(17). , N—1 R

The density profile generated from this procedure is then p@(r,r')~ —~N \R=2p p(r)p(r’)

inserted into the free energy functional, EG4), to obtain
the MFDFT estimate of the free energy of the system. XO([r=r'|-b)O(R—|r—r'|=b). (32

C. Method of solution
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An extra factor ofR/(R—2b) has been inserted to ensure 1 N N

that p® remains normalized for homogeneous profiles de-  po(Rem) = ——f IT dr,
. . . . ZN! ) ;

spite the exclusion of 2 from the available volume in the

system. This pair distribution function is exact for a homo-

geneous fluid of two hard rod particles; however, it is an X 8

approximation when an inhomogeneous external field is

present giving rise to an inhomogeneous density profile. The

MFDFT free energy function is now written as

1 N
N2 ri—Rc.m_) e (ot KT (34)

WhereZ is the exact partition function. Transforming to cen-
ter of mass coordinates =r;—R. ., pc(Rcm) becomes

F —fRdrkTp(r)m(p(r) ! 1 N 1
pbFT [2(1-bp(r))]* _ =1 | o (HotHpIK
0 p cm) ZN' ]._.[ dr 5 z N i e HO H T.
1 (R R
+§fo erO drp@(rr)gr—1), (39 39

Ho+H; is unchanged by this change of coordinates since it
employing the two-particle distribution function from Eg. depends only on particle separations, and with the correct
(32. boundary conditions the integration limits remain un-

The need for this correction is not particularly a conse-changed. We can therefore see that the right-hand side of Eq.
guence of the small size of the system, but rather the rela35) does not depend on the value Rf ,,, resulting in a
tively low magnitude of the total cohesive energy in this distributionp. that does not depend on position.
two-particle case. If there were more particles in more di-  As we have seen, in MFDFT the aim is to find the opti-
mensions, and therefore more pairwise contributions to thenal form of the effective mean field potenti®i(r) in the
system energy, the error introduced through allowing particleHamiltonianH, to mimic the effect of the attractive interac-
overlap would be less severe. tions in H,. The density profilep(r) is the single-particle
distribution function arising from the reference system de-
scribed byH with this form of V(r). The MFDFT approxi-
mation to the distribution of the center of mass is determined
by taking the trace of the operatp(R.,) in the reference

The final correction we need to consider deals with theensemble, which we write as
breakage of translational symmetry implied by MFDFT and
the consequent inhomogeneous distribution of the center ofO 1 N
mass of the system. A dynamical mode of the systemPc(Rem)= Zo NI H dr;é 21 ri—Rem.
namely, the motion of the center of mass, is incorrectly de-
scribed, and this affects the free energy. F{

X ex

2. Center of mass translation

N

This issue has been the subject of some controversy in kT > UR(ri_rj)+_:21 V(r
the literature. Talanquer and Oxtdfyhave assumed that i '
when MFDFT is applied to a system in a closed volume, the (36)
free energy obtained includes the full translational free en-
ergy for the center of mass of the system within that volume.
Simulations by Reguerat al,?? on the other hand, indicate
that density profiles obtained from MFDFT correspond N
closely to a system modeled by Monte Carlo simulation with p°(R )_ f H dr. 5( Z E _ )
a fixed center of mass. We take the view of Batfetiat the Pelfem)= 7o NI ~N'
MFDFT approach limits the translational motion of the cen-
ter of mass of the system to a certain volume around the Xexr{ _ i(E Ug(r/ =t/

. . . R
center of the mean field potential well. For system sizes of a KT
few tens of particles, this is a small volume compared with N
the extent of the profile itself, and so this interpretation is ,
consistent with the observations made by Regusral?? +i21 V(i +R°'m)”' (37
However, the center of mass is not fixed: it may be regarded
as tethered to the midpoint of the mean field potential, and’he integrand now does depend ugyy,,, as a result of the
undergoing quasiharmonic oscillations about it. spatial dependence of the mean field potentiagl). Conse-

To make this clearer, consider a one-dimensional closeduently the center of mass distributipf is spatially vary-
system of lengthR, containing N particles interacting ing: we are more likely to find the center of mass in some
through a pair potential(r;—r;). With suitable periodic parts of the system than in others. This remains the case with
boundary conditions that avoid boundary effects, the probhigher order in perturbation theory, along the lines described
ability distribution for the position of the center of mass in Sec. Ill B. This unphysical result is an artifact of the mean
pc(Re.m) should be uniform. Nowp.(R. ) is the expecta- field approximation, and will lead to an underestimation of
tion value of the operatorp(R;m)= 8((1/N) EiN= e the entropy of the system. Correcting this error is possible by
—R¢m), SO changing the treatment of the center of mass dynamical de-

Converting to the center of mass coordinates r;—R; .,
we get
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gree of freedont®>3°This replacement is slightlsd hocand
unsatisfactory, but it is the treatment we shall use here.

We begin by writing the reference partition functid@g
as

N
1
Zo= "Ny dridp; exd — (K+Hg)/KT], (39
h™N! =1

where thep; are the particle momenta. This can be expressed
with the insertion of integrations over the center of mass

positionR; ,, and momentunP, ,, :

1 N
ZOZJ dRc.m.ch.m.Wj |1:[1 dridp;é

1 N N
X _2 ri_Rc.m.) 5(2 pi_Pc.m.>
Ni=1 =1
1 N
xexp{—k—_l_ K+<i2j> UR(ri—rj)+i21 V(ri)”,
(39
or
ZOZJ' dRe mdPcmx(Rem. Pem)s (40

which defines a distribution functigp which is related t(p(c)
through

1
Pg( Rem) = Z_oj X(Rem,Pem)dPe - (41
Equation(40) may be cast instead in the form
1
ZOZHJ dPc mdRe m eXd —Hei(Rem., Pem)/KT],
(42)

where H; is an effective Hamiltonian controlling the dy-

namics of the system center of mass. In order to describe
properly the freedom of motion of the center of mass, we
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This free energy correction may be evaluated using the
optimum single-particle density profile(r) obtained from
the Euler-Lagrange equation. We return to B2f) which we
write in the form

1 N
pRem = [ T ars
') iz

1 N
N ri—Rc.m.) pM({ri}),
(46)

Wherep™ is the N-body distribution function. We can pro-
ceed in terms of the one-particle density profiér) by
modeling theN-particle distribution according to a crude
random phase approximation:

TR
pMN({rih= mll;[l p(ri),

(47)
s0p2(0) is given by
1[5 1
PS(O)ZWJ .1:[1 drip(ri)‘s(ﬁzl fi), (48)

which is readily calculable. For the casef 2, the result
is simply

1 1
p0)=7 [ drsptrop-r=3 [ drpry @9

with the final form being a consequence of symmetry. A
better approximation, perhaps, would be to use the more ap-
propriate version of the RPA given in E(2).

For generaN, we can evaluate the integral in E@.8)
by inserting 5(x) = (27) "1[”..dwexp(wx), in which case
p(0)=N"N27)"1f*_dwpN(w/N), wherep is given by

T)(q)=J p(r)expiqr)dr.

The translational free energy correctiar is therefore cal-
culable, and this completes the improved MFDFT treatment.

(50

IV. RESULTS

We perform calculations for two finite rod lengtls

should replace this Hamiltonian with that of a free particle.=0.1, b=0.01 and also pointlike particlds=0 in dimen-

The corrected partition function is

JdRcm.

20= 20 qR. 1 exf — U(Rom) KT

(43

where U(R. ) is the effective potential in the effective
Hamiltonian. The origirR; ,,=0 is chosen to lie at the cen-
ter of the mean field potential and we can chob®)=0.
Therefore pS(O) =h"1fdP, m exd —Hei(0,Pcm)/KT1/Zo
=1/fdR. n.exd —U(R.»)/kT] and we can write

- [dRm
ZO - fd Rc.m.eXF[_ U(Rc.m)/kT]

=pe(O)R, (44)

sionless units. For each rod length, equilibrium density pro-
files were found by solving Eq.18) and the MFDFT free
energy is calculated for a range of “volumeR” This is then
compared to the MFDFT free energy for a homogeneous
density distributionp=2/R, and to the exact free energy ob-
tained by numerical integration of the partition function in
Eqg. (1.

As mentioned earlier, to avoid complications we focus
on the excess free energy,, which measures the difference
in free energy of the system and an ideal gas consisting of
two noninteracting particlesa(=0 andb=0) occupying the
same volume. To illustrate the qualitative differences be-
tween the interacting case and the noninteracting case, Fig. 1

which is in agreement with similar corrections suggested irshows the full free energgin arbitrary unitg versusR of a
the literatureé®3° The associated shift in reference free en-system of interacting particlesr=5, b=1, A =0.5) as well

ergy is given by

AF=—KkTIn[p2(0)R]. (45)

as the free energy of noninteracting particles. It can be seen
that at small volumes the difference is significant, due to the
short range repulsive and attractive forces, while for large
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FIG. 1. Comparison between the free energies of two noninteracting poinf!G. 3. Excess free energy calculated exadtiplid line), and in three
particles and two interacting hard rods, as a function of ring circumferencdlifferent forms of MFDFT. The dashed line results from inserting a homo-

R. The difference between the two defines the excess free energy examinégneous density profilp=2/R into Eq. (33), the free energy functional
in Figs. 35 for various cases. incorporating the modifications to the random phase approximation. The

squares show the same free energy evaluated using the optimal inhomoge-
neous density profile. This free energy lacks the translational corresfon
described in Eq(45), and the substantial change that this introduces is

. ... shown by the further shift to the values shown by circles. These calculations
volumes the difference becomes smaller as these COnmblzre performed for rods with length= 0.1, in dimensionless units, and for a

tions to the free energy become less important. We thereforgeciied attractive potential. The variation with the length of the ring, is

expectF ., to become small for largR. shown. For most values &, inhomogeneous density profiles are favored,
Homogeneous profiles are expected to be the solutions teyt homogeneous profiles become more favorable for snRall@he trans-

the EuIer-Lagrange equation aR—0, since in this limit, lational correctio_n greatly improves the agreement between the MFDFT and

. . . . . . exact free energies.

there is minor spatial dependence in the attractive interac-

tion, and it has the same effect as adding a constant potential

to the system. It can be shown that the functional in B8)

provides the exact free energy of the system in this limit. The  The MFDFT free energies, obtained by finding inhomo-

error compared with the exact free energy increases lith geneous optimal density profiles, lie closer to the exact free

anda, as shown in Fig. 2. For this study, the parameters werenergy, though there remains a large discrepancy. At small

adjusted to give a reasonably short range interaction, witivolumes R~3 for b=0 and b=0.01, andR~5 for b

considerable strength. The depth of the attractive potentia0.1) the difference in free energy associated with the ho-

energy well at contacti.e., when the rod centers are sepa-mogeneous and optimal inhomogeneous density profiles be-

rated byb) has been set tgp(b)=—10kT, and the param- comes very small, and eventually the homogeneous solutions

eter 1A, which determines the length scale of the attractiveto Eq. (18) become optimal. A similar development is ex-

interaction, has been set to unity. In Figs. 3=§ is plotted  pected at very larg®, when the “vapor” is very rarefied;

againstR for three different rod sizes.

O T I T I T I T I T | T
5
[
< 10
LL'O
— F_ exact
151 - FX[2/R) n
o Folp®l | |
o Fo'[p@)] +AF
20 L ] L 1 A 1 L 1 ! I )
0 2 4 8 10 12
FIG. 2. Percentage error of MFDFT free energy for a homogeneous profile g
as a function of the potential well depth at contagt and interaction range
parameteir. For this plotb=0.1 andR=5.0. FIG. 4. As in Fig. 3, but for rods with length=0.01.

Downloaded 20 Oct 2004 to 128.40.2.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 11, 15 September 2004 Thermodynamics of attractive hard rods 5089

o — T T T T T T 7T 7T
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o Fo'[p(] +AF ]
_20.I.I.I.I.I.I.I.I.I. ._~" "-_\
0 2 4 6 8 10 12 14 16 18 20 . L B i e T

R

FIG. 5. As in Fig. 3, but for pointlike rods with length=0. . . . )
FIG. 6. The optimal inhomogeneous density profiles for the three cases

described in Figs. 3—5 fdR=5. Note that the smaller rods are described by
a more peaked profile, and consequently a narrower mean field potential.

however this limit is not observed in our calculations due to
the large magnitude op(b). order terms, as well as an error due to the RPA approxima-
The small rod lengthd=0 andb=0.01 give rise t0 tion in the evaluation ofH1)o.
more pronounced inhomogeneous density profiles than the The large discrepancy between the exact and MFDFT
larger rodsb=0.1, as is illustrated in Fig. 6, and therefore free energy is due to the unsuitability of a mean field treat-
show a bigger difference between the homogeneous and thgent for a system of low dimensionality, consisting of very
inhomogeneous profile MFDFT free energies. few strongly interacting particles. For such a system large
It can be seen from these plots that the MFDFT freefluctuations or deviations from mean field behavior are ex-
energies always lie above the exact free energy. For homgyected.
geneous density profiles neither LDA nor RPA approxima-  The correctiomAF for translational motion of the system
tions are made in the functioné3), and it is an exact rep- center of mass is significant for all three rod sizes. The pro-
resentation of Eq9). In this case, the Bogoliubov inequality files become narrower for smaller indicating that the mean
ensures that the MFDFT free energy lies above the exact frefeld potentialV(r) is narrower, leading to stronger confine-
energy. The large discrepancy between the exact free energiyent of the center of mass. This gives rise to a larger free
and the MFDFT free energy for homogeneous profiles is duenergy correction factor for narrower profiles. It should be
to the inaccuracy of the perturbation expansi@. The noted that once the translational correctidh is made, the
mean fieldV(r), which in the homogeneous case is just aBogoliubov inequality is no longer valid regardless of the
constant potential, is supposed to emulate the effect of attrac-
tive interactionsé(r—r') in order to make(Hi/Z)o and
higher order moments dfl; as small as possible. This does 15 - . - . - . - . -
not seem to be accurate for the cases considered. ¢b)=-10kT A=1.0 b=0.1 R=50 — o
As we are in a regime in which the interaction strength e Py
is large and the range Xis finite, an inhomogeneous mean
field, and therefore an inhomogeneous density profile, is ex-
pected to do better. However in this case there will also be an
implicit error due to the LDA and RPA in the functional. In
order to quantify the error due to the LDA, a numerical in-
vestigation has been carried out in which the free energy of
two hard rod particles in an external harmonic potential was
calculated exactly and compared with the free energy calcu-
lated using the LDA approximatiofil3). It was found that
the LDA performs extremely well up to very high ratios of
potential well curvature to rod length, indicating that the
LDA contributes negligibly to the error, at least in the pa-
rameter ranges for which inhomogeneous profiles were ob-
tained in this study. Therefore for the case of inhomogeneous r
profiles, the difference betwgen the MFPFT results and th% G. 7. The zeroth{solid line) and first-order densitydotted ling profiles
exact free energy can be attributed again to a breakdown @ the b=0.1 case, and the difference between theash-dotted lire
the perturbation expansion leading to non-negligible higheaccording to the perturbative expressions given in Sec. Il B.
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LDA and RPA approximations, since the confinement of thereference hard sphere system, and is added to the MFDFT
system center of mass, the effect we are attempting to cofree energy once an optimal density profile equivalently
rect, is an inherent part of thid, reference system which mean field potentiaV/(r)] has been found.
includes an external field. The modifications we have employed lead to substantial
A numerical study on three profiles fdr=0.1,0.01,0 changes in the MFDFT free energy. We have compared these
with R=5.0 was carried out to evaluate the first-order denfree energies with exact values, which are easy to compute
sity profile p,(r) given by Eq.(23). This revealed thagb,(r) for such a small system. We have highlighted the modifica-
is similar top(r) but is slightly flatter, as would be expected. tion to the translational contribution to the free energy. Our
This is illustrated in Fig. 7 for the case bi=0.1. The free calculations show that the correction is greatest when the
energy calculated from the resulting first-order profiles didoptimal density profile departs most strongly from homoge-
not vary significantly from the original zeroth-order free en- neity.

ergy obtained using thg(r) profiles. We expect these various factors to be important in cal-
culations of the free energy of small molecular clusters fre-
V. CONCLUSIONS qguently made in nucleation studies using mean field density
functional theory. Further studies along these lines are
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