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Mean field density functional theory~MFDFT! has been employed to calculate the free energy of a
pair of attractive hard rods on a ring. The results for homogeneous and optimal inhomogeneous
density profiles have been compared with the exact free energy as a test of the approach. We discuss
the problems in applying MFDFT to small systems and suggest modifications which allow a
reasonably accurate treatment of this particular, rather extreme, case. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1782371#

I. INTRODUCTION

Although the gaseous state of matter is formed primarily
from independently moving molecules, solidlike and liquid-
like molecular clusters are present as well. These are delicate
structures, changing size frequently by processes of evapora-
tion and condensation. They are of interest because they can
tell us a great deal about the forces which are responsible for
the cohesion of traditional bulk condensed matter. They be-
come particularly important when the pressure exceeds the
saturated vapor pressure and the gas becomes metastable. It
is through the formation and growth of molecular clusters
that a supersaturated gas, with a pressure higher than the
saturated vapor pressure, makes its transition to the more
stable condensed phase. The properties of clusters therefore
fundamentally control the process of nucleation of droplets
or crystals from a vapor phase.1,2

Interest in this process has driven efforts to calculate the
thermodynamic properties of small molecular clusters. The
principal property of interest in droplet nucleation is the free
energy of formation of a cluster from its separated constitu-
ents, but major difficulties are encountered in computing the
entropic contribution to the free energy. Molecular simula-
tion provides the most direct approach, using Monte Carlo or
molecular dynamics techniques, together with thermody-
namic integration or grand canonical umbrella sampling to
evaluate free energy differences.3–11However, for large clus-
ters such methods become very time consuming, and alter-
natives on a coarser level of description have been devel-
oped.

The main method available in this coarse grained cat-
egory is ~classical! mean field density functional theory
~MFDFT!. This approach has been used to study molecular
clusters for nearly 20 years.12–17 It is relatively simple to
implement and it provides useful insight into cluster thermo-
dynamics. It incorporates important features absent from
simpler descriptions, such as the capillarity model and its
derivatives.1,18–20When used to calculate droplet nucleation
rates, it occupies the middle ground between the classical
theory of nucleation21 and theories based on molecular simu-
lation.

In spite of this frequent usage, however, there has been

relatively little work on validating MFDFT against other ap-
proaches. This is perhaps due to the lack of suitable cases in
statistical physics where analytical solution is possible. Nu-
merical work on more microscopic scales is difficult, as
mentioned earlier. One of the few such studies is the recent
work by Regueraet al.,22 where MFDFT is compared with
Monte Carlo calculations for clusters of 80 argon atoms, with
a discussion of the differences in density profiles and system
pressures.

In this study we consider a case where the exact free
energy is available for comparison with MFDFT calcula-
tions. The reference calculations are easy since we consider a
small number of molecules. On the other hand, this requires
us to proceed carefully, since there are features of standard
MFDFT which are inconsistent when applied to systems con-
taining small numbers of molecules. We shall explore and
comment on a number of these matters.

As is suggested by its name, MFDFT is a mean field
approach, whereby the~usually pairwise! molecular interac-
tions are represented to a first approximation by an effective
external field; a potential well that confines the molecules to
a certain spatial region.16 Such an approach might be inac-
curate for small systems. This is exacerbated by a second
assumption, the random phase approximation, according to
which contributions to the free energy from correlations in
molecular positions are ignored. Standard MFDFT also tends
to overcount the pairwise interaction energy by overestimat-
ing the two-particle distribution function. A final problem is
that the confinement of the molecules in the effective poten-
tial leads to an underestimate of the system entropy: the mol-
ecules are in fact free to move anywhere within the system
and not only within the range of the effective potential:16 this
requires what is called the translational correction. All of
these approximations are questionable, and some of them are
particularly so when the number of molecules in the system
is small.

We have studied a very simple system to see how these
approximations affect the accuracy of free energies calcu-
lated by MFDFT, and how the difficulties might be over-
come. We have actually chosen a system where the problems
should be most severe: a one-dimensional system containing
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just two interacting hard rods. There have been few other
attempts to develop a MFDFT for small systems.23 In the
following sections we show how MFDFT calculations of the
free energy of this system compare with exact values. We
illustrate some of the difficulties in the standard theory, but
show how modifications of the functional allow a reasonable
accuracy to be achieved. These modifications should prove
useful in more complicated systems as well. We evaluate the
exact free energy in Sec. II, develop a MFDFT in Sec. III,
and discuss results in Sec. IV, finally reaching some conclu-
sions in Sec. V.

II. EXACT FREE ENERGY

We consider two hard rods each of lengthb and free to
move on a line of lengthR, with periodic boundary condi-
tions. The rods interact through a pair potentialf(r 12) where
r 12 is the separation of the rod centers. The partition function
is

Z5
1

2
g2E

0

R

dr1E
0

R

dr2 exp@2U~r 1 ,r 2!/kT#, ~1!

whereg5(2pmkT)1/2/h is the inverse thermal de Broglie
wavelength (m is the rod mass andh is Planck’s constant!, k
is Boltzmann’s constant,T is the temperature, andU(r 1 ,r 2)
is the potential energy of the system,r 1 andr 2 are the posi-
tions of the centers of the rods.U(r 1 ,r 2) can be separated
into an attractive potentialf(r 12r 2) and a hard sphere re-
pulsive potentialUR(r 12r 2). Due to the periodic boundary
conditions, the rods interact with each other and with peri-
odic images. We assume a formf(r )52a exp(2lr) and,
for simplicity, we limit the range of this potential so that
there are only two terms in the exponent: an interaction be-
tween rod 1 and rod 2, and between rod 1 and the closest
periodic image of rod 2. Further contributions to the interac-
tion energy are neglected. We consider a short range repul-
sive potentialUR(r 12r 2) taking the form of a hard sphere
interaction in one dimension:

UR~r 12r 2!50 when ur 12r 2u>b,
~2!

UR~r 12r 2!5` when ur 12r 2u,b.

This reduces the partition function toZ5g2RI/2 where

I 5E
b

R2b

dr2 expS a

kT
exp~2lr 2!

1
a

kT
exp~2l@R2r 2!# D . ~3!

The free energy isF52kT ln Z, but for convenience we
focus on an excess free energy, obtained by subtracting the
free energy of two noninteracting point particles:

Fex5F2F id52kTS ln
g2RI/2

g2R2/2D5kT ln~R/I !. ~4!

The integralI can be calculated numerically once the param-
eters are specified. For convenience, we shall later on repre-
sent distancesR, r 2 , b, andl as dimensionless multiples of
some length scaleR0 . We also express energiesa andFex in
terms of the energy scalekT. It is therefore simple to evalu-

ate the excess free energy for two interacting rods as a func-
tion of the sizeR of the system in which they reside.

III. MEAN FIELD DENSITY FUNCTIONAL THEORY

A. The standard free energy functional

At the core of MFDFT applied to fluids is the separation
of the attractive and repulsive interactions. To make the
problem tractable, the repulsive interactions are dealt with in
the hard sphere~or in this one-dimensional case hard rod!
approximation. The attractions are regarded as a perturbation
on the hard sphere system. Next, a mean field approximation
is employed which introduces an external effective single
particle potentialV(r ), tailored to mimic the effect of the
pairwise attractive interactions. In order to do this, the
Hamiltonian of the system is written16 as

H5K1H01H1 , ~5!

whereK is the kinetic energy part of the Hamiltonian andH0

is the Hamiltonian,

H05(̂
i j &

UR~r i2r j !1(
i 51

N

V~r i !, ~6!

whereUR is the hard sphere repulsive interaction potential.
The angled brackets signify all pairs of particles. The Hamil-
tonian K1H0 describes a reference system ofN hard
spheres~or rods! in a single particle~mean field! potential
V(r ). H1 is

H15(̂
i j &

f~r i2r j !2(
i 51

N

V~r i !, ~7!

wheref(r ) is the attractive interaction potential. This con-
tribution is treated as a perturbation of the reference system
in order to estimate the free energy. The exponential exp
(2H1 /kT) is expanded to first order. The mean field free
energy of the system is then given by

FMF'2kT ln
gN

N! E )
i 51

N

drie
2H0 /kT~12H1 /kT!

5F02kT ln~12^H1&0 /kT!'F01^H1&0 , ~8!

whereF052kT ln Z0 is the free energy of the reference sys-
tem, withZ05@gN*)dri exp(2H0 /kT)/N!#. The second term
is the average perturbative energy estimated using the prob-
ability distribution of states in the reference system. Spatial
integrations are over the entire ring. The free energy depends
on the choice made for the mean field potentialV(r ). How-
ever, the average ofV(r ) cancels out between the two con-
tributions in Eq.~8!, allowing the free energy to be rewritten
as

FMF5Fh1K (̂
i j &

f~r i2r j !L
0

, ~9!

whereFh is the free energy of the reference system minus
the contribution due to the mean field potential, and the sec-
ond term is the average of the pairwise attractive interactions
in the ensemble of the reference system.
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The mean field potentialV(r ) appears neither in the full
Hamiltonian in Eq.~5! nor explicitly in the free energyFMF

given by Eq.~9!. The dependence onV(r ) is hidden in the
weighting of configurations in thê¯ &0 averages and in
Fh . The main purpose ofV(r ) is to mimic the effect of the
attractive interactions. This approximation is best when the
perturbative contribution to Eq.~8! is small. This can be
achieved by choosingV(r ) to minimize the free energy
FMF . The Bogoliubov inequality ensures that the free energy
calculated in this way will not lie below the true free energy
of the system with HamiltonianH.24

We can develop the theory now in terms of particle den-
sity profiles: a density functional approach. Both terms on
the right-hand side of Eq.~9! may be regarded as functionals
of the reference system single particle distribution function
or density profiler(r ), defined by

r~r !5K (
i 51

N

d~r i2r !L
0

5
N

Z0

gN

N! E )
i 51

N

dri exp~2H0 /kT!d~r 12r !. ~10!

This is itself a functional of the mean field potentialV(r ), so
the minimization of the free energy, now writtenFDFT , may
be taken to be with respect to this density profile. This was
the key observation made by Barrett in his interpretation of
the standard density functional approach.16

Let us now develop a density functional representation
of the free energyFDFT for the two-rod system. The termFh

is the intrinsic free energy of an inhomogeneous fluid of
nonattractive hard rods. Percus25,26 developed an analytical
functional for this, which is exact for the case when the
number of particlesN is large. It will be shown that this
treatment breaks down for the case whenN52. For the pur-
poses of this study we employ the local density approxima-
tion ~LDA !, since this is the standard practice for developing
MFDFT in higher dimensions, where exact solutions are not
available.

The first step is to find an expression for the free energy
of a homogeneous system of hard rods. In the notation of the
preceding section, the exact free energy of two noninteract-
ing hard rods isFh52kT ln@g2R(R22b)/2#. The homoge-
neous one-particle density isr52/R so we can rewrite this
as

Fh52kT lnS 2

gR

1

@2~122b/R!#1/2D , ~11!

and extract the free energy density

f h5Fh /R5kTr lnS r

g

1

@2~12br!#1/2D . ~12!

The next step is to write the free energy in the local density
approximation as a functional of a spatially varying, refer-
ence system one-particle densityr(r ):

Fh5E
0

R

f h@r~r !#dr

5E
0

R

kTr~r !lnS r~r !

g

1

@2~12br~r !!#1/2D . ~13!

This is the intrinsic free energy of the system with Hamil-
tonianH0 , that is to say, the contribution due to the interac-
tions between the rods and the mean field has been sub-
tracted. It is clearly a functional ofr(r ).

The second term in Eq.~9! is the average attractive en-
ergy evaluated in the probability distribution of states inH0 ,
which can be written in the form27

K (̂
i j &

f~r i2r j !L
0

5
1

2 E0

R

drE
0

R

dr8r (2)~r ,r 8!f~r 2r 8!,

~14!

wherer (2)(r ,r 8) is the two-particle distribution function of
hard rods in the reference system. The standard DFT treat-
ment of this contribution involves a further simplification:
the random phase approximation~RPA!, according to which

r (2)~r ,r 8!'r~r !r~r 8!, ~15!

and the final expression forFDFT is then

FDFT5E
0

R

drkTr~r !lnS r~r !

g

1

@2~12br~r !!#1/2D
1

1

2 E0

R

drE
0

R

dr28r~r !r~r 8!f~r 2r 8!. ~16!

The free energy is now explicitly a functional of the refer-
ence system one-particle density profiler(r ). Minimizing
Eq. ~16! with respect tor(r ) is equivalent to choosing the
V(r ) which best mimics the attractive interactions.

The optimalV(r ) can be reconstructed from the optimal
density profile if required, though there are difficulties which
we shall discuss shortly.

The minimization is achieved by solving the Euler-
Lagrange equation associated with Eq.~16!, incorporating
the normalization constraint*rdr52 through a Lagrange
multiplier L:

mh@r~r !#5L2E r~r 8!f~r 2r 8!dr8, ~17!

where

mh@r~r !#5
d fh@r~r !#

dr

5kTF lnS r~r !

g$2@12br~r !#%1/2D
111

br~r !

2@12br~r !#G . ~18!

The free energy of the system is then obtained by substitut-
ing this profile into the original free energy functional. This
completes our development of standard MFDFT for this
problem.
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At this point we can compare the intrinsic chemical po-
tential of the hard rod fluidmh to that obtained by Percus.26

mh@r~r !#/kT5 lnF r~r !

12* r
r 1br~r 8!dr8G

1E
r 2b

r r~r 8!dr8

12* r 8
r 81br~r 9!dr9

. ~19!

Settingr(r ) to a constantr, this equals

mh@r#/kT5 lnF r

12brG1
br

12br
. ~20!

The difference between this and Eq.~18! with r(r )5r and
g51 arises because the Percus formula was derived in the
thermodynamic limit.

Note that in calculations in nucleation theory, the grand
potentialV is often required, in which case the constantL in
the above equation is the fixed external chemical potential,
andV5FDFT2LN with N now equal to the mean number
of molecules in the system for a given chemical potential.
For our closed system, the chemical potentialL is adjusted
to ensure that the number of particles present is equal to 2.

B. Higher order contributions to r

It is worth reflecting briefly on the density profile that
emerges from the above procedure. It is quite natural for the

resulting profile to be spatially varying. This is just a conse-
quence of the spatial dependence of the mean field potential
V(r ) present in the reference system Hamiltonian. On the
other hand, the single-particle density profilerH in the real
~not the reference! system is given by

rH~r !5
N

Z

gN

N! E )
i 51

N

dri

3exp@2~H01H1!/kT#d~r 12r !, ~21!

whereZ is the exact partition function. Due to the transla-
tional symmetry of the HamiltonianH5K1H01H1 , this
profile should be uniform. The reference density profiler(r )
can be considered as the zeroth-order approximation to
rH(r ) in an expansion inH1 . To check the validity of this
approach, higher order contributions torH can be computed
by expanding the exp(2H1 /kT) factor in Eq. ~21!. For ex-
ample the first-order density profile is given by

r1~r !5
N*) i 51

N dri exp~2H0 /kT!~12H1 /kT!d~r 2r 1!

*) i 51
N dri exp~2H0 /kT!~12H1 /kT!

.

~22!

This can be calculated approximately, using the random
phase approximation and the zero-order density profiler(r ):

r1~r !'

r~r !F12
1

2
~N21!~N22!N22I 11~N21!N21I 22~N21!N21*dr8f~r 2r 8!r~r 8!/kT1V~r !/kTG

12
1

2
~N21!N21I 11I 2

, ~23!

where

I 15E dr8dr9f~r 82r 9!r~r 8!r~r 9!/kT ~24!

and

I 25E dr8V~r 8!r~r 8!/kT. ~25!

One problem here is that the mean fieldV(r ) appears explic-
itly in Eq. ~23!. The inversion of the zeroth-order profile
r(r ) to give V(r ) is tedious and also incomplete, since the
mean field is necessarily uncertain up to a constant. This
difficulty does not occur in earlier expressions such as Eq.
~16!, where the role played by the mean field is hidden.
However, we may proceed using an approximation forV(r )
obtained by neglecting the hard sphere repulsions, namely,
V(r )'2kT ln r(r)1C whereC is the arbitrary constant. It is
possible to fix this constant by demanding that the perturba-
tive second term in Eq.~8!, evaluated using the approximate
V(r ), should vanish. Once this is imposed, the first-order
density profile reduces to

r1~r !'r~r !F12
~N21!

N2 I 12
1

N
I 22

~N21!

N

3E dr8f~r 2r 8!r~r 8!/kT2 ln rG ~26!

in which I 2 is now the integral in Eq.~25! with V(r ) re-
placed by2kT ln r.

This result is still spatially varying. Indeed any expan-
sion of Eq.~21! to finite order, and employing approxima-
tions to calculate the corrections, will lead to a density pro-
file with spatial variation. The loss of translational symmetry
is caused fundamentally by the need to choose an arbitrary
location in space for the center of the mean field potential
well. By choosing a particular location and using the zeroth-
order term, we obtain an inhomogeneous reference system
single-particle density profiler(r ). This is the interpretation
by Barrett.16 The breakage of translational symmetry, how-
ever, is associated with an undesirable error in the free en-
ergy. The MFDFT approach should be amended to take this
effect into account, and we shall address this point later on.

It is also worth pointing out that the Euler-Lagrange
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equation~17! generates profiles corresponding tostationary
values of the free energy or grand potential. Saddle point
solutions are produced as well as stable global minima, and
in nucleation applications, the metastable solutions are iden-
tified with critical clusters: the growth or evaporation of
which are equally likely. The objection has been made that
saddle point solutions are irrelevant. For given external con-
ditions ~say temperature and chemical potential! the system
has a unique free energy and grand potential, and it is only
the minimized free energy from the MFDFT approach that
can be taken as an approximation to the free energy of an
actual system. To counter this objection, it was shown by
Talanquer and Oxtoby14 that the metastable solutions in an
open system~fixed chemical potential! map onto stable so-
lutions of a closed system~with fixed N), and so the use of
MFDFT might thereby be justified. It is necessary, however,
to make a choice of the volume for the closed system, and
this may be thought to correspond to a cluster definition. The
need to define a cluster in terms of a region ofN-particle
phase space is a common feature in microscopic statistical
mechanical models, but in contrast to other approaches,
MFDFT appears to be free of the necessity to do likewise.
This is not the case, for the reasons just outlined. Further-
more, the cluster definitions available in MFDFT seem lim-
ited to the imposition of a confining volume, rather than
something more physical, such as conditions involving bind-
ing energy.28

C. Method of solution

There is a standard iterative approach to solving the in-
tegral equation~17! for r(r ). A trial profile is inserted into
the right-hand side, and a new profile is generated by invert-
ing the functionmh(r). For a fixedL this procedure leads
ultimately to a free energy minimizing profile, but if the
initial profile is chosen suitably, then a metastable saddle
point solution may emerge and remain little changed for
many iterations.

This is not the procedure we use, largely because in
practice we found that for small systems the metastable state
is not readily observable. Instead we effectively updateL at
each iteration with the intention of ensuring the desired nor-
malization condition*rdr52. We alter the Euler-Lagrange
equation to

mh@r~r !#52kT lnS 1

2 Edr exp@~2mh,c2feff!/kT# D2feff ,

~27!

where feff(r)5*r(r8)f(r2r8)dr8 and mh,c(r )5mh

2kT ln(r/g). This revised equation is equivalent to that em-
ployed by Lee, da Gama, and Gubbins,12 and Talanquer and
Oxtoby14 to control the normalization for closed systems.
The first term on the left-hand side of Eq.~27! is nothing
more than the appropriate value ofL appearing in Eq.~17!.
The density profile generated from this procedure is then
inserted into the free energy functional, Eq.~14!, to obtain
the MFDFT estimate of the free energy of the system.

D. Modifications

1. Small N effects

In applying MFDFT to small systems, several crucial
modifications to the standard development should not be
overlooked. These modifications are necessary to take ac-
count of finite size effects that become increasingly impor-
tant as the number of particles becomes small.

The first two corrections take us back to the RPA in Eq.
~15!. The correct relationship between the two-particle dis-
tribution function r (2)(r ,r 8) and a product of two single-
particle distribution functionsr(r )r(r 8) is given by

r (2)~r ,r 8!5g~r ,r 8!r~r !r~r 8!, ~28!

where g(r ,r 8) is the pair correlation function. In the RPA
this function is set to unity irrespective of the positionsr and
r 8. We will make corrections to this approximation in several
stages. The first correction results from consideration of the
normalization condition27 for ann-particle distribution func-
tion:

E
0

R

)
i 51

n

drir
(n)~$r i%!5

N!

~N2n!!
. ~29!

For the case ofn52 ~the two-particle distribution function!
the right-hand side of Eq.~29! is equal toN(N21). On the
other hand, the one-particle distribution functions are nor-
malized to N, giving N2 for the integral of the product
r(r )r(r 8). Therefore the RPA approximationg51 should
be replaced by the more accurate formg5(N21)/N, and
Eq. ~15! becomes

r (2)~r ,r 8!'
N21

N
r~r !r~r 8!. ~30!

It is clear that this correction is only important for smallN,
but in the case ofN52 it introduces a substantial correction
factor of 1/2. We have employed this correct normalization
in the derivation of Eq.~23! already.

A second modification of Eq.~15! addresses the neglect
within the RPA of spatial correlations between the two rods.
Associated terms have have been ignored in the perturbative
contribution to the free energy:12*0

Rdr*0
Rdr8r (2)(r ,r 8)f(r

2r 8). The most severe consequence of this is that the RPA
fails to remove the attractive energy due to overlapping con-
figurations of rods, i.e., whenur 2r 8u,b. This leads to a
substantial overestimation of the magnitude of the cohesive
energy in the system. An approximate way to take account of
this is to construct a correlation function from a pair of step
functions

g~r ,r 8!}U~ ur 2r 8u2b!U~R2ur 2r 8u2b!, ~31!

whereU(z)50 for z,0 and unity otherwise. Nowg(r ,r 8)
is explicitly zero for overlapping hard rod configurations,
and Eq.~15! is modified to

r (2)~r ,r 8!'S N21

N D S R

R22bD r~r !r~r 8!

3U~ ur 2r 8u2b!U~R2ur 2r 8u2b!. ~32!
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An extra factor ofR/(R22b) has been inserted to ensure
that r (2) remains normalized for homogeneous profiles de-
spite the exclusion of 2b from the available volume in the
system. This pair distribution function is exact for a homo-
geneous fluid of two hard rod particles; however, it is an
approximation when an inhomogeneous external field is
present giving rise to an inhomogeneous density profile. The
MFDFT free energy function is now written as

FDFT5E
0

R

drkTr~r !lnS r~r !

g

1

@2~12br~r !!#1/2D
1

1

2 E0

R

drE
0

R

dr28r
(2)~r ,r 8!f~r 2r 8!, ~33!

employing the two-particle distribution function from Eq.
~32!.

The need for this correction is not particularly a conse-
quence of the small size of the system, but rather the rela-
tively low magnitude of the total cohesive energy in this
two-particle case. If there were more particles in more di-
mensions, and therefore more pairwise contributions to the
system energy, the error introduced through allowing particle
overlap would be less severe.

2. Center of mass translation

The final correction we need to consider deals with the
breakage of translational symmetry implied by MFDFT and
the consequent inhomogeneous distribution of the center of
mass of the system. A dynamical mode of the system,
namely, the motion of the center of mass, is incorrectly de-
scribed, and this affects the free energy.

This issue has been the subject of some controversy in
the literature. Talanquer and Oxtoby14 have assumed that
when MFDFT is applied to a system in a closed volume, the
free energy obtained includes the full translational free en-
ergy for the center of mass of the system within that volume.
Simulations by Regueraet al.,22 on the other hand, indicate
that density profiles obtained from MFDFT correspond
closely to a system modeled by Monte Carlo simulation with
a fixed center of mass. We take the view of Barrett16 that the
MFDFT approach limits the translational motion of the cen-
ter of mass of the system to a certain volume around the
center of the mean field potential well. For system sizes of a
few tens of particles, this is a small volume compared with
the extent of the profile itself, and so this interpretation is
consistent with the observations made by Regueraet al.22

However, the center of mass is not fixed: it may be regarded
as tethered to the midpoint of the mean field potential, and
undergoing quasiharmonic oscillations about it.

To make this clearer, consider a one-dimensional closed
system of lengthR, containing N particles interacting
through a pair potentialU(r i2r j ). With suitable periodic
boundary conditions that avoid boundary effects, the prob-
ability distribution for the position of the center of mass
rc(Rc.m.) should be uniform. Now,rc(Rc.m.) is the expecta-
tion value of the operator r̂(Rc.m.)5d„(1/N) ( i 51

N r i

2Rc.m.…, so

rc~Rc.m.!5
1

Z

gN

N! E )
i 51

N

dri

3dS 1

N (
i 51

N

r i2Rc.m.D e2(H01H1)/kT, ~34!

whereZ is the exact partition function. Transforming to cen-
ter of mass coordinatesr i85r i2Rc.m., rc(Rc.m.) becomes

rc~Rc.m.!5
1

Z

gN

N! E )
i 51

N

dri8dS (
i 51

N
1

N
r i8D e2(H01H1)/kT.

~35!

H01H1 is unchanged by this change of coordinates since it
depends only on particle separations, and with the correct
boundary conditions the integration limits remain un-
changed. We can therefore see that the right-hand side of Eq.
~35! does not depend on the value ofRc.m., resulting in a
distributionrc that does not depend on position.

As we have seen, in MFDFT the aim is to find the opti-
mal form of the effective mean field potentialV(r ) in the
HamiltonianH0 to mimic the effect of the attractive interac-
tions in H1 . The density profiler(r ) is the single-particle
distribution function arising from the reference system de-
scribed byH0 with this form ofV(r ). The MFDFT approxi-
mation to the distribution of the center of mass is determined
by taking the trace of the operatorr̂(Rc.m.) in the reference
ensemble, which we write as

rc
0~Rc.m.!5

1

Z0

gN

N! E )
i 51

N

dridS 1

N (
i 51

N

r i2Rc.m.D
3expF2

1

kT S (̂
i j &

UR~r i2r j !1(
i 51

N

V~r i !D G .

~36!

Converting to the center of mass coordinatesr i85r i2Rc.m.,
we get

rc
0~Rc.m.!5

1

Z0

gN

N! E )
i 51

N

dri8dS (
i 51

N
1

N
r i8D

3expF2
1

kT S (̂
i j &

UR~r i82r j8!

1(
i 51

N

V~r i81Rc.m.!D G . ~37!

The integrand now does depend uponRc.m., as a result of the
spatial dependence of the mean field potentialV(r ). Conse-
quently the center of mass distributionrc

0 is spatially vary-
ing: we are more likely to find the center of mass in some
parts of the system than in others. This remains the case with
higher order in perturbation theory, along the lines described
in Sec. III B. This unphysical result is an artifact of the mean
field approximation, and will lead to an underestimation of
the entropy of the system. Correcting this error is possible by
changing the treatment of the center of mass dynamical de-
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gree of freedom.29,30This replacement is slightlyad hocand
unsatisfactory, but it is the treatment we shall use here.

We begin by writing the reference partition functionZ0

as

Z05
1

hNN! E )
i 51

N

dridpi exp@2~K1H0!/kT#, ~38!

where thepi are the particle momenta. This can be expressed
with the insertion of integrations over the center of mass
positionRc.m. and momentumPc.m.:

Z05E dRc.m.dPc.m.

1

hNN! E )
i 51

N

dridpid

3S 1

N (
i 51

N

r i2Rc.m.D dS (
i 51

N

pi2Pc.m.D
3expF2

1

kT S K1(̂
i j &

UR~r i2r j !1(
i 51

N

V~r i !D G ,

~39!

or

Z05E dRc.m.dPc.m.x~Rc.m.,Pc.m.!, ~40!

which defines a distribution functionx, which is related torc
0

through

rc
0~Rc.m.!5

1

Z0
E x~Rc.m.,Pc.m.!dPc.m.. ~41!

Equation~40! may be cast instead in the form

Z05
1

h E dPc.m.dRc.m.exp@2Heff~Rc.m.,Pc.m.!/kT#,

~42!

where Heff is an effective Hamiltonian controlling the dy-
namics of the system center of mass. In order to describe
properly the freedom of motion of the center of mass, we
should replace this Hamiltonian with that of a free particle.
The corrected partition function is

Z085Z0

*dRc.m.

*dRc.m.exp@2U~Rc.m.!/kT#
, ~43!

where U(Rc.m.) is the effective potential in the effective
Hamiltonian. The originRc.m.50 is chosen to lie at the cen-
ter of the mean field potential and we can chooseU(0)50.
Therefore rc

0(0)5h21*dPc.m.exp@2Heff(0,Pc.m.)/kT#/Z0

51/*dRc.m.exp@2U(Rc.m.)/kT# and we can write

Z08

Z0
5

*dRc.m.

*dRc.m.exp@2U~Rc.m.!/kT#
5rc

0~0!R, ~44!

which is in agreement with similar corrections suggested in
the literature.29,30 The associated shift in reference free en-
ergy is given by

DF52kT ln@rc
0~0!R#. ~45!

This free energy correction may be evaluated using the
optimum single-particle density profiler(r ) obtained from
the Euler-Lagrange equation. We return to Eq.~36! which we
write in the form

rc
0~Rc.m.!5

1

N! E )
i 51

N

dridS 1

N (
i 51

N

r i2Rc.m.D r (N)~$r i%!,

~46!

wherer (N) is theN-body distribution function. We can pro-
ceed in terms of the one-particle density profiler(r ) by
modeling theN-particle distribution according to a crude
random phase approximation:

r (N)~$r i%!5
N!

NN )
i 51

N

r~r i !, ~47!

so rc
0(0) is given by

rc
0~0!5

1

NN E )
i 51

N

drir~r i !dS 1

N (
i 51

N

r i D , ~48!

which is readily calculable. For the case ofN52, the result
is simply

rc
0~0!5

1

4 E dr1r~r 1!r~2r 1!5
1

4 E dr1r2~r 1! ~49!

with the final form being a consequence of symmetry. A
better approximation, perhaps, would be to use the more ap-
propriate version of the RPA given in Eq.~32!.

For generalN, we can evaluate the integral in Eq.~48!
by insertingd(x)5(2p)21*2`

` dw exp(iwx), in which case
rc

0(0)5N2N(2p)21*2`
` dwr̃N(w/N), wherer̃ is given by

r̃~q!5E r~r !exp~ iqr !dr. ~50!

The translational free energy correctionDF is therefore cal-
culable, and this completes the improved MFDFT treatment.

IV. RESULTS

We perform calculations for two finite rod lengthsb
50.1, b50.01 and also pointlike particlesb50 in dimen-
sionless units. For each rod length, equilibrium density pro-
files were found by solving Eq.~18! and the MFDFT free
energy is calculated for a range of ‘‘volumes’’R. This is then
compared to the MFDFT free energy for a homogeneous
density distributionr52/R, and to the exact free energy ob-
tained by numerical integration of the partition function in
Eq. ~1!.

As mentioned earlier, to avoid complications we focus
on the excess free energyFex, which measures the difference
in free energy of the system and an ideal gas consisting of
two noninteracting particles (a50 andb50) occupying the
same volume. To illustrate the qualitative differences be-
tween the interacting case and the noninteracting case, Fig. 1
shows the full free energy~in arbitrary units! versusR of a
system of interacting particles (a55, b51, l50.5) as well
as the free energy of noninteracting particles. It can be seen
that at small volumes the difference is significant, due to the
short range repulsive and attractive forces, while for large
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volumes the difference becomes smaller as these contribu-
tions to the free energy become less important. We therefore
expectFex to become small for largeR.

Homogeneous profiles are expected to be the solutions to
the Euler-Lagrange equation aslR→0, since in this limit,
there is minor spatial dependence in the attractive interac-
tion, and it has the same effect as adding a constant potential
to the system. It can be shown that the functional in Eq.~33!
provides the exact free energy of the system in this limit. The
error compared with the exact free energy increases withl
anda, as shown in Fig. 2. For this study, the parameters were
adjusted to give a reasonably short range interaction, with
considerable strength. The depth of the attractive potential
energy well at contact~i.e., when the rod centers are sepa-
rated byb) has been set tof(b)5210kT, and the param-
eter 1/l, which determines the length scale of the attractive
interaction, has been set to unity. In Figs. 3–5Fex is plotted
againstR for three different rod sizes.

The MFDFT free energies, obtained by finding inhomo-
geneous optimal density profiles, lie closer to the exact free
energy, though there remains a large discrepancy. At small
volumes (R;3 for b50 and b50.01, andR;5 for b
50.1) the difference in free energy associated with the ho-
mogeneous and optimal inhomogeneous density profiles be-
comes very small, and eventually the homogeneous solutions
to Eq. ~18! become optimal. A similar development is ex-
pected at very largeR, when the ‘‘vapor’’ is very rarefied;

FIG. 1. Comparison between the free energies of two noninteracting point
particles and two interacting hard rods, as a function of ring circumference
R. The difference between the two defines the excess free energy examined
in Figs. 3–5 for various cases.

FIG. 2. Percentage error of MFDFT free energy for a homogeneous profile
as a function of the potential well depth at contacta0 , and interaction range
parameterl. For this plotb50.1 andR55.0.

FIG. 3. Excess free energy calculated exactly~solid line!, and in three
different forms of MFDFT. The dashed line results from inserting a homo-
geneous density profiler52/R into Eq. ~33!, the free energy functional
incorporating the modifications to the random phase approximation. The
squares show the same free energy evaluated using the optimal inhomoge-
neous density profile. This free energy lacks the translational correctionDF
described in Eq.~45!, and the substantial change that this introduces is
shown by the further shift to the values shown by circles. These calculations
are performed for rods with lengthb50.1, in dimensionless units, and for a
specified attractive potential. The variation withR, the length of the ring, is
shown. For most values ofR, inhomogeneous density profiles are favored,
but homogeneous profiles become more favorable for smallerR. The trans-
lational correction greatly improves the agreement between the MFDFT and
exact free energies.

FIG. 4. As in Fig. 3, but for rods with lengthb50.01.
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however this limit is not observed in our calculations due to
the large magnitude off(b).

The small rod lengthsb50 and b50.01 give rise to
more pronounced inhomogeneous density profiles than the
larger rodsb50.1, as is illustrated in Fig. 6, and therefore
show a bigger difference between the homogeneous and the
inhomogeneous profile MFDFT free energies.

It can be seen from these plots that the MFDFT free
energies always lie above the exact free energy. For homo-
geneous density profiles neither LDA nor RPA approxima-
tions are made in the functional~33!, and it is an exact rep-
resentation of Eq.~9!. In this case, the Bogoliubov inequality
ensures that the MFDFT free energy lies above the exact free
energy. The large discrepancy between the exact free energy
and the MFDFT free energy for homogeneous profiles is due
to the inaccuracy of the perturbation expansion~8!. The
mean fieldV(r ), which in the homogeneous case is just a
constant potential, is supposed to emulate the effect of attrac-
tive interactionsf(r 2r 8) in order to make^H1

2/2&0 and
higher order moments ofH1 as small as possible. This does
not seem to be accurate for the cases considered.

As we are in a regime in which the interaction strengtha
is large and the range 1/l is finite, an inhomogeneous mean
field, and therefore an inhomogeneous density profile, is ex-
pected to do better. However in this case there will also be an
implicit error due to the LDA and RPA in the functional. In
order to quantify the error due to the LDA, a numerical in-
vestigation has been carried out in which the free energy of
two hard rod particles in an external harmonic potential was
calculated exactly and compared with the free energy calcu-
lated using the LDA approximation~13!. It was found that
the LDA performs extremely well up to very high ratios of
potential well curvature to rod length, indicating that the
LDA contributes negligibly to the error, at least in the pa-
rameter ranges for which inhomogeneous profiles were ob-
tained in this study. Therefore for the case of inhomogeneous
profiles, the difference between the MFDFT results and the
exact free energy can be attributed again to a breakdown of
the perturbation expansion leading to non-negligible higher

order terms, as well as an error due to the RPA approxima-
tion in the evaluation of̂H1&0 .

The large discrepancy between the exact and MFDFT
free energy is due to the unsuitability of a mean field treat-
ment for a system of low dimensionality, consisting of very
few strongly interacting particles. For such a system large
fluctuations or deviations from mean field behavior are ex-
pected.

The correctionDF for translational motion of the system
center of mass is significant for all three rod sizes. The pro-
files become narrower for smallerb, indicating that the mean
field potentialV(r ) is narrower, leading to stronger confine-
ment of the center of mass. This gives rise to a larger free
energy correction factor for narrower profiles. It should be
noted that once the translational correctionDF is made, the
Bogoliubov inequality is no longer valid regardless of the

FIG. 6. The optimal inhomogeneous density profiles for the three cases
described in Figs. 3–5 forR55. Note that the smaller rods are described by
a more peaked profile, and consequently a narrower mean field potential.

FIG. 7. The zeroth-~solid line! and first-order density~dotted line! profiles
for the b50.1 case, and the difference between them~dash-dotted line!,
according to the perturbative expressions given in Sec. III B.

FIG. 5. As in Fig. 3, but for pointlike rods with lengthb50.
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LDA and RPA approximations, since the confinement of the
system center of mass, the effect we are attempting to cor-
rect, is an inherent part of theH0 reference system which
includes an external field.

A numerical study on three profiles forb50.1,0.01,0
with R55.0 was carried out to evaluate the first-order den-
sity profiler1(r ) given by Eq.~23!. This revealed thatr1(r )
is similar tor(r ) but is slightly flatter, as would be expected.
This is illustrated in Fig. 7 for the case ofb50.1. The free
energy calculated from the resulting first-order profiles did
not vary significantly from the original zeroth-order free en-
ergy obtained using ther(r ) profiles.

V. CONCLUSIONS

We have investigated how well a mean field density
functional theory performs in a very simple case of two at-
tractive hard rods on a ring. Mean field theories are expected
to be less successful in treating small systems due to the
importance of fluctuations: they are better suited as a de-
scription of large systems. Reguerra and Reiss point out31

that the neglect of certain fluctuations in MFDFT may be a
blessing in disguise for application to nucleation theory. This
is because it allows MFDFT to capture stationary states of a
system that do not correspond to equilibrium states, as for
example the formation of critical molecular clusters in a con-
densing vapor. In this study we focused on how well MFDFT
can estimate the equilibrium free energy of a closed system,
so this neglect of fluctuations represents a shortcoming high-
lighted in the difference between the MFDFT and exact free
energies.

Our primary concern in this work is to see how the stan-
dard MFDFT functional should be modified to cope with
finite size effects. Two modifications involve changes to the
random phase approximation, used to estimate the interac-
tion free energy. The first is the need to ensure normalization
of the two-particle distribution function when it is replaced
by a product of single distribution functions. The second
correction is to prevent the inclusion of forbidden configura-
tions with overlapping hard rods. Failure to remove these
configurations leads to a substantial overestimation of the
cohesive energy.

The final effect concerns the loss of translational sym-
metry due to the introduction of a mean field potential. This
means that the free energy associated with the motion of the
system center of mass is not correctly treated and, for small
systems, the error can be substantial. This loss of symmetry
remains even if higher order terms are included in the evalu-
ation of the density profile. The problem is resolved by the
replacement of the effective Hamiltonian controlling the mo-
tion of the center of mass. The correction to the free energy
can be evaluated directly using the density distribution in the

reference hard sphere system, and is added to the MFDFT
free energy once an optimal density profile@or equivalently
mean field potentialV(r )] has been found.

The modifications we have employed lead to substantial
changes in the MFDFT free energy. We have compared these
free energies with exact values, which are easy to compute
for such a small system. We have highlighted the modifica-
tion to the translational contribution to the free energy. Our
calculations show that the correction is greatest when the
optimal density profile departs most strongly from homoge-
neity.

We expect these various factors to be important in cal-
culations of the free energy of small molecular clusters fre-
quently made in nucleation studies using mean field density
functional theory. Further studies along these lines are
planned.

1D. Kashchiev,Nucleation: Basic theory with Applications~Butterworths,
London, 2000!.

2I. J. Ford, Phys. Rev. E56, 5615~1997!.
3J. K. Lee, J. A. Barker, and F. F. Abraham, J. Chem. Phys.58, 3166
~1973!.

4P. R. ten Wolde and D. Frenkel, J. Chem. Phys.109, 9901~1998!.
5K. Yasuoka and M. Matsumoto, J. Chem. Phys.109, 8451~1998!.
6K. Yasuoka and M. Matsumoto, J. Chem. Phys.109, 8463~1998!.
7P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys.109,
9901 ~1998!.

8K. J. Oh and X. C. Zeng, J. Chem. Phys.110, 4471~1999!.
9H. Vehkama¨ki and I. J. Ford, J. Chem. Phys.112, 4193~2000!.

10P. Schaaf, B. Senger, J. C. Voegel, R. K. Bowles, and H. Reiss, J. Chem.
Phys.114, 8091~2001!.

11S. Yoo, K. J. Oh, and X. C. Zeng, J. Chem. Phys.115, 8518~2001!.
12D. J. Lee, M. M. T. da Gama, and K. E. Gubbins, J. Chem. Phys.85, 490

~1986!.
13D. W. Oxtoby and R. Evans, J. Chem. Phys.89, 7521~1988!.
14V. Talanquer and D. W. Oxtoby, J. Chem. Phys.100, 5190~1994!.
15A. Laaksonen, V. Talanquer, and D. W. Oxtoby, Annu. Rev. Phys. Chem.

46, 489 ~1995!.
16J. C. Barrett, J. Chem. Phys.107, 7989~1997!.
17J. C. Barrett, J. Chem. Phys.111, 5938~1999!.
18A. Dillmann and G. E. A. Meier, J. Chem. Phys.94, 3872~1991!.
19V. I. Kalikmanov and M. E. H. van Dongen, J. Chem. Phys.103, 4250

~1995!.
20L. Gránásy, J. Chem. Phys.104, 5188~1996!.
21M. Volmer and A. Weber, Z. Phys. Chem.119, 277 ~1926!.
22D. Reguera, R. K. Bowles, Y. Djikaev, and H. Reiss, J. Chem. Phys.118,

340 ~2003!.
23A. Gonzalez, J. A. White, F. L. Roman, and S. Velasco, Phys. Rev. Lett.

79, 2466~1997!.
24J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,Theory of

Critical Phenomena—An Introduction into the Renormalization Group
~Oxford University Press, Oxford, 1992!.

25J. K. Percus, J. Chem. Phys.75, 1316~1981!.
26J. K. Percus, J. Stat. Phys.28, 67 ~1982!.
27V. I. Kalikmanov,Statistical Physics of Fluids—Basic concepts and appli-

cations~Springer, Berlin, 2001!.
28S. A. Harris and I. J. Ford, J. Chem. Phys.118, 9216~2003!.
29H. Reiss, J. L. Katz, and E. R. Cohen, J. Chem. Phys.48, 5553~1968!.
30F. M. Kuni and A. I. Rusanov, Phys. Lett.29A, 337 ~1969!.
31D. Reguerra and H. Reiss, J. Chem. Phys.120, 2558~2004!.

5090 J. Chem. Phys., Vol. 121, No. 11, 15 September 2004 S. Khakshouri and I. J. Ford

Downloaded 20 Oct 2004 to 128.40.2.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


